Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation

Abstract

Changes in visual cortical responses that are induced by monocular visual deprivation are a widely studied example of competitive, experience-dependent neural plasticity. It has been thought that the deprived-eye pathway will fail to compete against the open-eye pathway for limited amounts of brain-derived neurotrophic factor, which acts on TrkB and is needed to sustain effective synaptic connections. We tested this model by using a chemical-genetic approach in mice to inhibit TrkB kinase activity rapidly and specifically during the induction of cortical plasticity in vivo. Contrary to the model, TrkB kinase activity was not required for any of the effects of monocular deprivation. When the deprived eye was re-opened during the critical period, cortical responses to it recovered. This recovery was blocked by TrkB inhibition. These findings suggest a more conventional trophic role for TrkB signaling in the enhancement of responses or growth of new connections, rather than a role in competition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of TrkBF616A in the cortex by 1NM-PP1.
Figure 2: Effects of TrkB kinase inhibition during the critical period on visual cortical functions.
Figure 3: TrkB inactivation does not affect plasticity induced by monocular deprivation.
Figure 4: TrkB inactivation blocks the recovery of cortical responses to the previously deprived eye.
Figure 5: Acute optical imaging and single-unit recording confirm the requirement of TrkB kinase activity for recovery.

Similar content being viewed by others

References

  1. Wiesel, T.N. Postnatal development of the visual cortex and the influence of environment. Nature 299, 583–591 (1982).

    Article  CAS  PubMed  Google Scholar 

  2. Reiter, H.O., Waitzman, D.M. & Stryker, M.P. Cortical activity blockade prevents ocular dominance plasticity in the kitten visual cortex. Exp. Brain Res. 65, 182–188 (1986).

    Article  CAS  PubMed  Google Scholar 

  3. Reiter, H.O. & Stryker, M.P. Neural plasticity without postsynaptic action potentials: less-active inputs become dominant when kitten visual cortical cells are pharmacologically inhibited. Proc. Natl. Acad. Sci. USA 85, 3623–3627 (1988).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hata, Y. & Stryker, M.P. Control of thalamocortical afferent rearrangement by postsynaptic activity in developing visual cortex. Science 265, 1732–1735 (1994).

    Article  CAS  PubMed  Google Scholar 

  5. Hata, Y., Tsumoto, T. & Stryker, M.P. Selective pruning of more active afferents when cat visual cortex is pharmacologically inhibited. Neuron 22, 375–381 (1999).

    Article  CAS  PubMed  Google Scholar 

  6. Lessmann, V., Gottmann, K. & Malcangio, M. Neurotrophin secretion: current facts and future prospects. Prog. Neurobiol. 69, 341–374 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Lu, B. BDNF and activity-dependent synaptic modulation. Learn. Mem. 10, 86–98 (2003).

    Article  PubMed  PubMed Central  Google Scholar 

  8. McAllister, A.K., Katz, L.C. & Lo, D.C. Neurotrophins and synaptic plasticity. Annu. Rev. Neurosci. 22, 295–318 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  PubMed  Google Scholar 

  10. Castren, E., Zafra, F., Thoenen, H. & Lindholm, D. Light regulates expression of brain-derived neurotrophic factor mRNA in rat visual cortex. Proc. Natl. Acad. Sci. USA 89, 9444–9448 (1992).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bozzi, Y. et al. Monocular deprivation decreases the expression of messenger RNA for brain-derived neurotrophic factor in the rat visual cortex. Neuroscience 69, 1133–1144 (1995).

    Article  CAS  PubMed  Google Scholar 

  12. Schoups, A.A., Elliott, R.C., Friedman, W.J. & Black, I.B. NGF and BDNF are differentially modulated by visual experience in the developing geniculocortical pathway. Brain Res. Dev. Brain Res. 86, 326–334 (1995).

    Article  CAS  PubMed  Google Scholar 

  13. Majdan, M. & Shatz, C.J. Effects of visual experience on activity-dependent gene regulation in cortex. Nat. Neurosci. 9, 650–659 (2006).

    Article  CAS  PubMed  Google Scholar 

  14. Galuske, R.A., Kim, D.S., Castren, E. & Singer, W. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex. Eur. J. Neurosci. 12, 3315–3330 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Gillespie, D.C., Crair, M.C. & Stryker, M.P. Neurotrophin-4/5 alters responses and blocks the effect of monocular deprivation in cat visual cortex during the critical period. J. Neurosci. 20, 9174–9186 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Lodovichi, C., Berardi, N., Pizzorusso, T. & Maffei, L. Effects of neurotrophins on cortical plasticity: same or different? J. Neurosci. 20, 2155–2165 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shatz, C.J. Neurotrophins and visual system plasticity. in Molecular and Cellular Approaches to Neural Development (eds. Cowan, M.W., Jessell, T.M. & Zipursky, S.L.) 509–524 (Oxford University Press, New York, 1997).

    Google Scholar 

  18. Hanover, J.L., Huang, Z.J., Tonegawa, S. & Stryker, M.P. Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. J. Neurosci. 19, RC40 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Huang, Z.J. et al. BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell 98, 739–755 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Thoenen, H. Neurotrophins and neuronal plasticity. Science 270, 593–598 (1995).

    Article  CAS  PubMed  Google Scholar 

  21. Bonhoeffer, T. Neurotrophins and activity-dependent development of the neocortex. Curr. Opin. Neurobiol. 6, 119–126 (1996).

    Article  CAS  PubMed  Google Scholar 

  22. Hensch, T.K. Critical period plasticity in local cortical circuits. Nat. Rev. Neurosci. 6, 877–888 (2005).

    Article  CAS  PubMed  Google Scholar 

  23. Specht, K.M. & Shokat, K.M. The emerging power of chemical genetics. Curr. Opin. Cell Biol. 14, 155–159 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Chen, X. et al. A chemical-genetic approach to studying neurotrophin signaling. Neuron 46, 13–21 (2005).

    Article  PubMed  Google Scholar 

  25. Wang, H. et al. Inducible protein knockout reveals temporal requirement of CaMKII reactivation for memory consolidation in the brain. Proc. Natl. Acad. Sci. USA 100, 4287–4292 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hensch, T.K. et al. Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science 282, 1504–1508 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Cang, J., Kalatsky, V.A., Lowel, S. & Stryker, M.P. Optical imaging of the intrinsic signal as a measure of cortical plasticity in the mouse. Vis. Neurosci. 22, 685–691 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Mioche, L. & Singer, W. Chronic recordings from single sites of kitten striate cortex during experience-dependent modifications of receptive-field properties. J. Neurophysiol. 62, 185–197 (1989).

    Article  CAS  PubMed  Google Scholar 

  29. Frenkel, M.Y. & Bear, M.F. How monocular deprivation shifts ocular dominance in visual cortex of young mice. Neuron 44, 917–923 (2004).

    Article  CAS  PubMed  Google Scholar 

  30. Bear, M.F., Kleinschmidt, A., Gu, Q.A. & Singer, W. Disruption of experience-dependent synaptic modifications in striate cortex by infusion of an NMDA receptor antagonist. J. Neurosci. 10, 909–925 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Liao, D.S., Mower, A.F., Neve, R.L., Sato-Bigbee, C. & Ramoa, A.S. Different mechanisms for loss and recovery of binocularity in the visual cortex. J. Neurosci. 22, 9015–9023 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krahe, T.E., Medina, A.E., de Bittencourt-Navarrete, R.E., Colello, R.J. & Ramoa, A.S. Protein synthesis–independent plasticity mediates rapid and precise recovery of deprived eye responses. Neuron 48, 329–343 (2005).

    Article  CAS  PubMed  Google Scholar 

  33. Ugolini, G., Cremisi, F. & Maffei, L. TrkA, TrkB and p75 mRNA expression is developmentally regulated in the rat retina. Brain Res. 704, 121–124 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Rutherford, L.C., Nelson, S.B. & Turrigiano, G.G. BDNF has opposite effects on the quantal amplitude of pyramidal neuron and interneuron excitatory synapses. Neuron 21, 521–530 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Vicario-Abejon, C., Owens, D., McKay, R. & Segal, M. Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci. 3, 965–974 (2002).

    Article  CAS  PubMed  Google Scholar 

  36. Lu, B., Pang, P.T. & Woo, N.H. The yin and yang of neurotrophin action. Nat. Rev. Neurosci. 6, 603–614 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Reichardt, L.F. Neurotrophin-regulated signaling pathways. Phil. Trans. R. Soc. Lond. B 361, 1545–1564 (2006).

    Article  CAS  Google Scholar 

  38. Minichiello, L. et al. Mechanism of TrkB-mediated hippocampal long-term potentiation. Neuron 36, 121–137 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Korte, M., Minichiello, L., Klein, R. & Bonhoeffer, T. Shc-binding site in the TrkB receptor is not required for hippocampal long-term potentiation. Neuropharmacology 39, 717–724 (2000).

    Article  CAS  PubMed  Google Scholar 

  40. Lessmann, V. & Heumann, R. Modulation of unitary glutamatergic synapses by neurotrophin-4/5 or brain-derived neurotrophic factor in hippocampal microcultures: presynaptic enhancement depends on pre-established paired-pulse facilitation. Neuroscience 86, 399–413 (1998).

    Article  CAS  PubMed  Google Scholar 

  41. Schinder, A.F., Berninger, B. & Poo, M. Postsynaptic target specificity of neurotrophin-induced presynaptic potentiation. Neuron 25, 151–163 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Tyler, W.J. et al. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J. Physiol. (Lond.) 574, 787–803 (2006).

    Article  CAS  Google Scholar 

  43. Li, Y.X., Zhang, Y., Lester, H.A., Schuman, E.M. & Davidson, N. Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons. J. Neurosci. 18, 10231–10240 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kang, H. & Schuman, E.M. Intracellular Ca2+ signaling is required for neurotrophin-induced potentiation in the adult rat hippocampus. Neurosci. Lett. 282, 141–144 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Blum, R. & Konnerth, A. Neurotrophin-mediated rapid signaling in the central nervous system: mechanisms and functions. Physiology (Bethesda) 20, 70–78 (2005).

    CAS  Google Scholar 

  46. Gordon, J.A. & Stryker, M.P. Experience-dependent plasticity of binocular responses in the primary visual cortex of the mouse. J. Neurosci. 16, 3274–3286 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Taha, S. & Stryker, M.P. Rapid ocular dominance plasticity requires cortical but not geniculate protein synthesis. Neuron 34, 425–436 (2002).

    Article  CAS  PubMed  Google Scholar 

  48. Aloyz, R., Fawcett, J.P., Kaplan, D.R., Murphy, R.A. & Miller, F.D. Activity-dependent activation of TrkB neurotrophin receptors in the adult CNS. Learn. Mem. 6, 216–231 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kalatsky, V.A. & Stryker, M.P. New paradigm for optical imaging: temporally encoded maps of intrinsic signal. Neuron 38, 529–545 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Cang, J. et al. Ephrin-as guide the formation of functional maps in the visual cortex. Neuron 48, 577–589 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The TrkBF616A mice were provided by D. Ginty and with the permission of CGI and Princeton University. We thank members of the laboratory and P. McQuillen for discussions, J. Cang for help with analyses of optical imaging data, A. Shreiber, C.M. Beal and T. Tran for technical assistance, Regeneron Pharmaceuticals for TrkB-IgG, and L. Reichardt for TrkB antibody. This study was supported by grants from the US National Institutes of Health (P50-MH077972, R37-EY02874, and T32-EY07120).

Author information

Authors and Affiliations

Authors

Contributions

M.K. carried out all of the biochemical analysis, optical imaging and single-unit recordings using TrkBF616A and their appropriate control mice, prepared all of the figures (except for Supplementary Fig. 3) and wrote the first draft of the manuscript. J.L.H. carried out experiments on K252a and TrkB-IgG mice. P.M.E. supplied mutant mice and 1NM-PP1. M.K., P.M.E. and M.P.S. designed the experiments and assisted with data analysis and revision of the manuscript.

Corresponding author

Correspondence to Michael P Stryker.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 6447 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaneko, M., Hanover, J., England, P. et al. TrkB kinase is required for recovery, but not loss, of cortical responses following monocular deprivation. Nat Neurosci 11, 497–504 (2008). https://doi.org/10.1038/nn2068

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2068

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing