Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells

Abstract

During their migration, cerebellar granule cells switch from a tangential to a radial mode of migration. We have previously demonstrated that this involves the transmembrane semaphorin Sema6A. We show here that plexin-A2 is the receptor that controls Sema6A function in migrating granule cells. In plexin-A2–deficient (Plxna2−/−) mice, which were generated by homologous recombination, many granule cells remained in the molecular layer, as we saw in Sema6a mutants. A similar phenotype was observed in mutant mice that were generated by mutagenesis with N-ethyl-N-nitrosourea and had a single amino-acid substitution in the semaphorin domain of plexin-A2. We found that this mutation abolished the ability of Sema6A to bind to plexin-A2. Mouse chimera studies further suggested that plexin-A2 acts in a cell-autonomous manner. We also provide genetic evidence for a ligand-receptor relationship between Sema6A and plexin-A2 in this system. Using time-lapse video microscopy, we found that centrosome-nucleus coupling and coordinated motility were strongly perturbed in Sema6a−/− and Plxna2−/− granule cells. This suggests that semaphorin-plexin signaling modulates cell migration by controlling centrosome positioning.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Plexin-A2 expression and function in migrating granule cells.
Figure 2: Abnormal in vitro migration of Plxna2−/− granule cells.
Figure 3: Analysis of NMF454 ENU-Plxna2 mutants.
Figure 4: Cell-autonomous function of plexin-A2 in migrating granule cells.
Figure 5: Abnormal nucleus-centrosome coupling in Sema6a and Plxna2 mutants.
Figure 6: Analysis of nucleus-centrosome and nucleus-Golgi spacing in Sema6a and Plxna2 mutants.
Figure 7: Cytoskeleton and Golgi apparatus in Sema6a and Plxna2 mutant granule cells.
Figure 8: Nucleus-centrosome coupling in vivo in ectopic granule cells.

Similar content being viewed by others

References

  1. Komuro, H. & Yacubova, E. Recent advances in cerebellar granule cell migration. Cell. Mol. Life Sci. 60, 1084–1098 (2003).

    Article  CAS  PubMed  Google Scholar 

  2. Zmuda, J.F. & Rivas, R.J. Actin filament disruption blocks cerebellar granule neurons at the unipolar stage of differentiation in vitro. J. Neurobiol. 43, 313–328 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Solecki, D.J., Model, L., Gaetz, J., Kapoor, T.M. & Hatten, M.E. Par6α signaling controls glial-guided neuronal migration. Nat. Neurosci. 7, 1195–1203 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Umeshima, H., Hirano, T. & Kengaku, M. Microtubule-based nuclear movement occurs independently of centrosome positioning in migrating neurons. Proc. Natl. Acad. Sci. USA 104, 16182–16187 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kholmanskikh, S.S., Dobrin, J.S., Wynshaw-Boris, A., Letourneau, P.C. & Ross, M.E. Disregulated RhoGTPases and actin cytoskeleton contribute to the migration defect in Lis1-deficient neurons. J. Neurosci. 23, 8673–8681 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guan, C.B., Xu, H.T., Jin, M., Yuan, X.B. & Poo, M.M. Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell 129, 385–395 (2007).

    Article  CAS  PubMed  Google Scholar 

  7. Kerjan, G. et al. The transmembrane semaphorin Sema6A controls cerebellar granule cell migration. Nat. Neurosci. 8, 1516–1524 (2005).

    Article  CAS  PubMed  Google Scholar 

  8. Tamagnone, L. et al. Plexins are a large family of receptors for transmembrane, secreted and GPI-anchored semaphorins in vertebrates. Cell 99, 71–80 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Toyofuku, T. et al. Guidance of myocardial patterning in cardiac development by Sema6D reverse signaling. Nat. Cell Biol. 6, 1204–1211 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Suto, F. et al. Plexin-a4 mediates axon-repulsive activities of both secreted and transmembrane semaphorins and plays roles in nerve fiber guidance. J. Neurosci. 25, 3628–3637 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Suto, F. et al. Interactions between plexin-A2, plexin-A4, and semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53, 535–547 (2007).

    Article  CAS  PubMed  Google Scholar 

  12. Weyer, A. & Schilling, K. Developmental and cell type–specific expression of the neuronal marker NeuN in the murine cerebellum. J. Neurosci. Res. 73, 400–409 (2003).

    Article  CAS  PubMed  Google Scholar 

  13. Sakagami, H., Umemiya, M., Kobayashi, T., Saito, S. & Kondo, H. Immunological evidence that the beta isoform of Ca2+/calmodulin-dependent protein kinase IV is a cerebellar granule cell–specific product of the CaM kinase IV gene. Eur. J. Neurosci. 11, 2531–2536 (1999).

    Article  CAS  PubMed  Google Scholar 

  14. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. & Nishimune, Y. 'Green mice' as a source of ubiquitous green cells. FEBS Lett. 407, 313–319 (1997).

    Article  CAS  PubMed  Google Scholar 

  15. Sasaki, Y. et al. Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex. Neuron 35, 907–920 (2002).

    Article  CAS  PubMed  Google Scholar 

  16. Bellion, A., Baudoin, J.P., Alvarez, C., Bornens, M. & Metin, C. Nucleokinesis in tangentially migrating neurons comprises two alternating phases: forward migration of the Golgi/centrosome associated with centrosome splitting and myosin contraction at the rear. J. Neurosci. 25, 5691–5699 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Schaar, B.T. & McConnell, S.K. Cytoskeletal coordination during neuronal migration. Proc. Natl. Acad. Sci. USA 102, 13652–13657 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tsai, J.W., Bremner, K.H. & Vallee, R.B. Dual subcellular roles for LIS1 and dynein in radial neuronal migration in live brain tissue. Nat. Neurosci. 10, 970–979 (2007).

    Article  CAS  PubMed  Google Scholar 

  19. Higginbotham, H., Tanaka, T., Brinkman, B.C. & Gleeson, J.G. GSK3beta and PKCzeta function in centrosome localization and process stabilization during Slit-mediated neuronal repolarization. Mol. Cell. Neurosci. 32, 118–132 (2006).

    Article  CAS  PubMed  Google Scholar 

  20. Chedotal, A., Kerjan, G. & Moreau-Fauvarque, C. The brain within the tumor: new roles for axon guidance molecules in cancers. Cell Death Differ. 12, 1044–1056 (2005).

    Article  CAS  PubMed  Google Scholar 

  21. Ding, S., Luo, J.H. & Yuan, X.B. Semaphorin-3F attracts the growth cone of cerebellar granule cells through cGMP signaling pathway. Biochem. Biophys. Res. Commun. 356, 857–863 (2007).

    Article  CAS  PubMed  Google Scholar 

  22. Chen, G. et al. Semaphorin-3A guides radial migration of cortical neurons during development. Nat. Neurosci. 11, 36–44 (2007).

    Article  PubMed  Google Scholar 

  23. Tsai, L.H. & Gleeson, J.G. Nucleokinesis in neuronal migration. Neuron 46, 383–388 (2005).

    Article  CAS  PubMed  Google Scholar 

  24. Love, C.A. et al. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat. Struct. Biol. 10, 843–848 (2003).

    Article  CAS  PubMed  Google Scholar 

  25. Bellenchi, G.C. et al. N-cofilin is associated with neuronal migration disorders and cell cycle control in the cerebral cortex. Genes Dev. 21, 2347–2357 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Rivas, R.J. & Hatten, M.E. Motility and cytoskeletal organization of migrating cerebellar granule neurons. J. Neurosci. 15, 981–989 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gomes, E.R., Jani, S. & Gundersen, G.G. Nuclear movement regulated by Cdc42, MRCK, myosin and actin flow establishes MTOC polarization in migrating cells. Cell 121, 451–463 (2005).

    Article  CAS  PubMed  Google Scholar 

  28. Kholmanskikh, S.S. et al. Calcium-dependent interaction of Lis1 with IQGAP1 and Cdc42 promotes neuronal motility. Nat. Neurosci. 9, 50–57 (2006).

    Article  CAS  PubMed  Google Scholar 

  29. Tanaka, T. et al. Lis1 and doublecortin function with dynein to mediate coupling of the nucleus to the centrosome in neuronal migration. J. Cell Biol. 165, 709–721 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Jaffe, A.B. & Hall, A. Rho GTPases: biochemistry and biology. Annu. Rev. Cell Dev. Biol. 21, 247–269 (2005).

    Article  CAS  PubMed  Google Scholar 

  31. Rohm, B., Rahim, B., Kleiber, B., Hovatta, I. & Puschel, A.W. The semaphorin 3A receptor may directly regulate the activity of small GTPases. FEBS Lett. 486, 68–72 (2000).

    Article  CAS  PubMed  Google Scholar 

  32. Oinuma, I., Ishikawa, Y., Katoh, H. & Negishi, M. The Semaphorin 4D receptor plexin-B1 is a GTPase-activating protein for R-Ras. Science 305, 862–865 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Turner, L.J., Nicholls, S. & Hall, A. The activity of the plexin-A1 receptor is regulated by Rac. J. Biol. Chem. 279, 33199–33205 (2004).

    Article  CAS  PubMed  Google Scholar 

  34. Tong, Y. et al. Binding of Rac1, Rnd1 and RhoD to a novel Rho GTPase interaction motif destabilizes dimerization of the plexin-B1 effector domain. J. Biol. Chem. 282, 37215–37224 (2007).

    Article  CAS  PubMed  Google Scholar 

  35. Barberis, D. et al. p190 Rho-GTPase activating protein associates with plexins and it is required for semaphorin signaling. J. Cell Sci. 118, 4689–4700 (2005).

    Article  CAS  PubMed  Google Scholar 

  36. Toyofuku, T. et al. FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat. Neurosci. 8, 1712–1719 (2005).

    Article  CAS  PubMed  Google Scholar 

  37. Etienne-Manneville, S. & Hall, A. Integrin-mediated activation of Cdc42 controls cell polarity in migrating astrocytes through PKCzeta. Cell 106, 489–498 (2001).

    Article  CAS  PubMed  Google Scholar 

  38. Xie, Z., Samuels, B.A. & Tsai, L.H. Cyclin-dependent kinase 5 permits efficient cytoskeletal remodeling—a hypothesis on neuronal migration. Cereb. Cortex 16 Suppl 1, i64–i68 (2006).

    Article  PubMed  Google Scholar 

  39. Ohshima, T. et al. Migration defects of cdk5−/− neurons in the developing cerebellum is cell autonomous. J. Neurosci. 19, 6017–6026 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Xie, Z., Sanada, K., Samuels, B.A., Shih, H. & Tsai, L.H. Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement and neuronal migration. Cell 114, 469–482 (2003).

    Article  CAS  PubMed  Google Scholar 

  41. Kawauchi, T., Chihama, K., Nabeshima, Y. & Hoshino, M. Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration. Nat. Cell Biol. 8, 17–26 (2006).

    Article  CAS  PubMed  Google Scholar 

  42. Clapcote, S.J. et al. Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54, 387–402 (2007).

    Article  CAS  PubMed  Google Scholar 

  43. Shu, T. et al. Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 44, 263–277 (2004).

    Article  CAS  PubMed  Google Scholar 

  44. Sasaki, S. et al. Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality. Mol. Cell. Biol. 25, 7812–7827 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mah, S. et al. Identification of the semaphorin receptor PLXNA2 as a candidate for susceptibility to schizophrenia. Mol. Psychiatry 11, 471–478 (2006).

    Article  CAS  PubMed  Google Scholar 

  46. Takeshita, M. et al. Genetic examination of the PLXNA2 gene in Japanese and Chinese schizophrenics. Schizophr. Res. 99, 359–364 (2008).

    Article  PubMed  Google Scholar 

  47. Fujii, T. et al. Failure to confirm an association between the PLXNA2 gene and schizophrenia in a Japanese population. Prog. Neuropsychopharmacol. Biol. Psychiatry 31, 873–877 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Wray, N.R. et al. Anxiety and comorbid measures associated with PLXNA2. Arch. Gen. Psychiatry 64, 318–326 (2007).

    Article  CAS  PubMed  Google Scholar 

  49. Fatemi, S.H., Reutiman, T.J., Folsom, T.D. & Sidwell, R.W. The role of cerebellar genes in pathology of autism and schizophrenia. Cerebellum published online doi:10.1080/14734220701392969 (16 May 2007).

  50. Marillat, V. et al. Spatiotemporal expression patterns of slit and robo genes in the rat brain. J. Comp. Neurol. 442, 130–155 (2002).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank H. Sakagami and H. Kondo for antibody to the β isoform of CaMKIV, M. Okabe for GFP transgenic mice, M. Bornens for centrin-GFP plasmid and antibodies to centrin, and L. Beverly-Staggs and L. Marquis for technical assistance with the NMF454 mice, the production of which was supported by the US National Institutes of Health (NS041215 and NS35900). We also thank Y.E. Jones and R. Robinson for their help with the analysis of plexin-A2 structure and R. Schwartzmann for help with confocal microscopy studies. A.C. and G.K. were supported by the Association pour la Recherche sur le Cancer, the Fondation pour la Recherche Médicale (programme équipe FRM) and the Agence Nationale pour la Recherche (ANR Neurosciences). H.F. was supported by the 21st Century Centers of Excellence Program and Grants-in-Aid for Scientific Research Japan. K.J.M. was supported by a Science Foundation Ireland grant (01/F.1/B006). S.L.A. is an investigator of the Howard Hughes Medical Institute. This work was also supported by grants from CREST (F.S.) of the Japanese Science and Technology Agency. J.R. is recipient of a fellowship from the Région Ile-de-France.

Author information

Authors and Affiliations

Authors

Contributions

J.R., G.K. and I.S. carried out the in vivo phenotypic analyses of knockout mice and the expression studies. J.R. performed the in vitro experiments. Y.Z. carried out the biochemical studies. C.F. generated the plexin-A2A396E construct and did the binding experiments. V.G. and J.R. performed the time-lapse microscopy and analyzed the confocal images. F.S. and H.F. obtained the Plxna2 knockout and antibodies. K.J.M. provided the Sema6a knockout and helped in the writing of the manuscript. D.K. and S.L.A. generated the NMF454 ENU-mutant and mapped the mutation to the Plxna2 locus. K.S. and M.S. generated the mouse chimeras. A.C. and H.F. designed the study, prepared the figures and wrote the core of the manuscript.

Corresponding author

Correspondence to Alain Chédotal.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 (PDF 887 kb)

Supplementary Video 1

Time-lapse video 1 of migrating wild-type granule cells expressing centrin 1–GFP. The explant is on the left of the frame. (MOV 211 kb)

Supplementary Video 2

Time-lapse video 2 of migrating wild-type granule cells expressing centrin 1–GFP. The explant is on the left of the frame. (MOV 72 kb)

Supplementary Video 3

Time-lapse video 3 of migrating Plxna2−/− granule cells expressing centrin 1–GFP. The explant is on the left of the frame. (MOV 116 kb)

Supplementary Video 4

Time-lapse video 4 of migrating Plxna2−/− granule cells expressing centrin 1–GFP. The explant is on the left of the frame. (MOV 188 kb)

Supplementary Video 5

Time-lapse video 5 of migrating Sema6a−/− granule cells expressing centrin 1–GFP. The explant is on the left of the frame. (MOV 131 kb)

Supplementary Video 6

Time-lapse video 6 of migrating Sema6a−/− granule cells expressing centrin 1–GFP. The explant is on the left of the frame. (MOV 129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Renaud, J., Kerjan, G., Sumita, I. et al. Plexin-A2 and its ligand, Sema6A, control nucleus-centrosome coupling in migrating granule cells. Nat Neurosci 11, 440–449 (2008). https://doi.org/10.1038/nn2064

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2064

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing