Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Development and spike timing–dependent plasticity of recurrent excitation in the Xenopus optic tectum

Abstract

Much of the information processing in the brain occurs at the level of local circuits; however, the mechanisms underlying their initial development are poorly understood. We sought to examine the early development and plasticity of local excitatory circuits in the optic tectum of Xenopus laevis tadpoles. We found that retinal input recruits persistent, recurrent intratectal synaptic excitation that becomes more temporally compact and less variable over development, thus increasing the temporal coherence and precision of tectal cell spiking. We also saw that patterned retinal input can sculpt recurrent activity according to a spike timing–dependent plasticity rule, and that impairing this plasticity during development results in abnormal refinement of the temporal characteristics of recurrent circuits. This plasticity is a previously unknown mechanism by which patterned retinal activity allows intratectal circuitry to self-organize, optimizing the temporal response properties of the tectal network, and provides a substrate for rapid modulation of tectal neuron receptive-field properties.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental changes in temporal response properties of tectal neuron spiking.
Figure 2: Subthreshold synaptic responses underlying tectal cell spiking.
Figure 3: Developmental changes in recurrent excitation in the tectum.
Figure 4: Comparison of spontaneous and evoked sEPSCs over development.
Figure 5: STDP of recurrent excitatory network activity.
Figure 6: In vivo visual experience shapes temporal properties of recurrent excitation.
Figure 7: NMDA and Ca2+-permeable AMPARs are required for plasticity and the development of recurrent excitatory tectal circuitry.

Similar content being viewed by others

References

  1. Peters, A. & Payne, B.R. Numerical relationships between geniculocortical afferents and pyramidal cell modules in cat primary visual cortex. Cereb. Cortex 3, 69–78 (1993).

    Article  CAS  PubMed  Google Scholar 

  2. Haider, B., Duque, A., Hasenstaub, A.R. & McCormick, D.A. Neocortical network activity in vivo is generated through a dynamic balance of excitation and inhibition. J. Neurosci. 26, 4535–4545 (2006).

    Article  CAS  PubMed  Google Scholar 

  3. Saito, Y. & Isa, T. Local excitatory network and NMDA receptor activation generate a synchronous and bursting command from the superior colliculus. J. Neurosci. 23, 5854–5864 (2003).

    Article  CAS  PubMed  Google Scholar 

  4. Reinagel, P., Godwin, D., Sherman, S.M. & Koch, C. Encoding of visual information by LGN bursts. J. Neurophysiol. 81, 2558–2569 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Somers, D.C., Nelson, S.B. & Sur, M. An emergent model of orientation selectivity in cat visual cortical simple cells. J. Neurosci. 15, 5448–5465 (1995).

    Article  CAS  PubMed  Google Scholar 

  6. Lisman, J.E. & Idiart, M.A. Storage of 7 ± 2 short-term memories in oscillatory subcycles. Science 267, 1512–1515 (1995).

    Article  CAS  PubMed  Google Scholar 

  7. Sutula, T.P. & Dudek, F.E. Unmasking recurrent excitation generated by mossy fiber sprouting in the epileptic dentate gyrus: an emergent property of a complex system. Prog. Brain Res. 163, 541–563 (2007).

    Article  CAS  PubMed  Google Scholar 

  8. McCormick, D.A., Trent, F. & Ramoa, A.S. Postnatal development of synchronized network oscillations in the ferret dorsal lateral geniculate and perigeniculate nuclei. J. Neurosci. 15, 5739–5752 (1995).

    Article  CAS  PubMed  Google Scholar 

  9. Buonomano, D.V. Timing of neural responses in cortical organotypic slices. Proc. Natl. Acad. Sci. USA 100, 4897–4902 (2003).

    Article  CAS  PubMed  Google Scholar 

  10. Beggs, J.M. & Plenz, D. Neuronal avalanches are diverse and precise activity patterns that are stable for many hours in cortical slice cultures. J. Neurosci. 24, 5216–5229 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Ikegaya, Y. et al. Synfire chains and cortical songs: temporal modules of cortical activity. Science 304, 559–564 (2004).

    Article  CAS  PubMed  Google Scholar 

  12. Sur, M. & Leamey, C.A. Development and plasticity of cortical areas and networks. Nat. Rev. Neurosci. 2, 251–262 (2001).

    Article  CAS  PubMed  Google Scholar 

  13. Debski, E.A. & Cline, H.T. Activity-dependent mapping in the retinotectal projection. Curr. Opin. Neurobiol. 12, 93–99 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. Holt, C.E. & Harris, W.A. Order in the initial retinotectal map in Xenopus: a new technique for labeling growing nerve fibres. Nature 301, 150–152 (1983).

    Article  CAS  PubMed  Google Scholar 

  15. Tao, H.W. & Poo, M.M. Activity-dependent matching of excitatory and inhibitory inputs during refinement of visual receptive fields. Neuron 45, 829–836 (2005).

    Article  CAS  PubMed  Google Scholar 

  16. Lazar, G. The development of the optic tectum in Xenopus laevis: a Golgi study. J. Anat. 116, 347–355 (1973).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Lazar, G. & Szekely, G. Golgi studies on the optic center of the frog. J. Hirnforsch. 9, 329–344 (1967).

    CAS  PubMed  Google Scholar 

  18. Nakagawa, H., Miyazaki, H. & Matsumoto, N. Principal neuronal organization in the frog optic tectum revealed by a current source density analysis. Vis. Neurosci. 14, 263–275 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. Grusser, O. & Grusser-Cornhels, U. Neurophysiology of the anuran visual system. in Frog Neurobiology: a Handbook (eds. Llinás, R. & Precht, W.) 297–385 (Springer-Verlag, Berlin, New York, 1976).

    Chapter  Google Scholar 

  20. Lee, P.H., Helms, M.C., Augustine, G.J. & Hall, W.C. Role of intrinsic synaptic circuitry in collicular sensorimotor integration. Proc. Natl. Acad. Sci. USA 94, 13299–13304 (1997).

    Article  CAS  PubMed  Google Scholar 

  21. Sparks, D.L. Translation of sensory signals into commands for control of saccadic eye movements: role of primate superior colliculus. Physiol. Rev. 66, 118–171 (1986).

    Article  CAS  PubMed  Google Scholar 

  22. Cline, H.T., Wu, G.Y. & Malinow, R. In vivo development of neuronal structure and function. Cold Spring Harb. Symp. Quant. Biol. 61, 95–104 (1996).

    Article  CAS  PubMed  Google Scholar 

  23. Akerman, C.J. & Cline, H.T. Depolarizing GABAergic conductances regulate the balance of excitation to inhibition in the developing retinotectal circuit in vivo. J. Neurosci. 26, 5117–5130 (2006).

    Article  CAS  PubMed  Google Scholar 

  24. Pratt, K.G. & Aizenman, C.D. Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit. J. Neurosci. 27, 8268–8277 (2007).

    Article  CAS  PubMed  Google Scholar 

  25. Wu, G., Malinow, R. & Cline, H.T. Maturation of a central glutamatergic synapse. Science 274, 972–976 (1996).

    Article  CAS  PubMed  Google Scholar 

  26. Lau, P.M. & Bi, G.Q. Synaptic mechanisms of persistent reverberatory activity in neuronal networks. Proc. Natl. Acad. Sci. USA 102, 10333–10338 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Xu-Friedman, M.A. & Regehr, W.G. Probing fundamental aspects of synaptic transmission with strontium. J. Neurosci. 20, 4414–4422 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Aizenman, C.D. & Cline, H.T. Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection. J. Neurophysiol. 97, 2949–2957 (2007).

    Article  PubMed  Google Scholar 

  29. Celikel, T., Szostak, V.A. & Feldman, D.E. Modulation of spike timing by sensory deprivation during induction of cortical map plasticity. Nat. Neurosci. 7, 534–541 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Mu, Y. & Poo, M.M. Spike timing–dependent LTP/LTD mediates visual experience-dependent plasticity in a developing retinotectal system. Neuron 50, 115–125 (2006).

    Article  CAS  PubMed  Google Scholar 

  31. Vislay-Meltzer, R.L., Kampff, A.R. & Engert, F. Spatiotemporal specificity of neuronal activity directs the modification of receptive fields in the developing retinotectal system. Neuron 50, 101–114 (2006).

    Article  CAS  PubMed  Google Scholar 

  32. Aizenman, C.D., Munoz-Elias, G. & Cline, H.T. Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines. Neuron 34, 623–634 (2002).

    Article  CAS  PubMed  Google Scholar 

  33. Zhang, L.I., Tao, H.W., Holt, C.E., Harris, W.A. & Poo, M. A critical window for cooperation and competition among developing retinotectal synapses. Nature 395, 37–44 (1998).

    Article  CAS  PubMed  Google Scholar 

  34. Lamsa, K.P., Heeroma, J.H., Somogyi, P., Rusakov, D.A. & Kullmann, D.M. Anti-Hebbian long-term potentiation in the hippocampal feedback inhibitory circuit. Science 315, 1262–1266 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Rajan, I. & Cline, H.T. Glutamate receptor activity is required for normal development of tectal cell dendrites in vivo. J. Neurosci. 18, 7836–7846 (1998).

    Article  CAS  PubMed  Google Scholar 

  36. Aizenman, C.D., Akerman, C.J., Jensen, K.R. & Cline, H.T. Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. Neuron 39, 831–842 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Ruthazer, E.S., Akerman, C.J. & Cline, H.T. Control of axon branch dynamics by correlated activity in vivo. Science 301, 66–70 (2003).

    Article  CAS  PubMed  Google Scholar 

  38. Grewer, C. & Hess, G.P. On the mechanism of inhibition of the nicotinic acetylcholine receptor by the anticonvulsant MK-801 investigated by laser-pulse photolysis in the microsecond-to-millisecond time region. Biochemistry 38, 7837–7846 (1999).

    Article  CAS  PubMed  Google Scholar 

  39. Jayaraman, V., Usherwood, P.N. & Hess, G.P. Inhibition of nicotinic acetylcholine receptor by philanthotoxin-343: kinetic investigations in the microsecond time region using a laser-pulse photolysis technique. Biochemistry 38, 11406–11414 (1999).

    Article  CAS  PubMed  Google Scholar 

  40. Edwards, J.A. & Cline, H.T. Light-induced calcium influx into retinal axons is regulated by presynaptic nicotinic acetylcholine receptor activity in vivo. J. Neurophysiol. 81, 895–907 (1999).

    Article  CAS  PubMed  Google Scholar 

  41. Lopez, J.M., Smeets, W.J. & Gonzalez, A. Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis. J. Comp. Neurol. 453, 418–434 (2002).

    Article  CAS  PubMed  Google Scholar 

  42. Udin, S.B. & Fisher, M.D. The development of the nucleus isthmi in Xenopus laevis. I. Cell genesis and the formation of connections with the tectum. J. Comp. Neurol. 232, 25–35 (1985).

    Article  CAS  PubMed  Google Scholar 

  43. Carandini, M. Amplification of trial-to-trial response variability by neurons in visual cortex. PLoS Biol. 2, E264 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  44. Priebe, N.J., Mechler, F., Carandini, M. & Ferster, D. The contribution of spike threshold to the dichotomy of cortical simple and complex cells. Nat. Neurosci. 7, 1113–1122 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Fu, Y.X. et al. Temporal specificity in the cortical plasticity of visual space representation. Science 296, 1999–2003 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Yao, H., Shi, L., Han, F., Gao, H. & Dan, Y. Rapid learning in cortical coding of visual scenes. Nat. Neurosci. 10, 772–778 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Cassenaer, S. & Laurent, G. Hebbian STDP in mushroom bodies facilitates the synchronous flow of olfactory information in locusts. Nature 448, 709–713 (2007).

    Article  CAS  PubMed  Google Scholar 

  48. Nieuwkoop, P.D. & Faber, J. Normal Table of Xenopus laevis (Daudin) (Garland Publishing, New York, 1956).

    Google Scholar 

  49. Clements, J.D. & Bekkers, J.M. Detection of spontaneous synaptic events with an optimally scaled template. Biophys. J. 73, 220–229 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank I. Sears for technical support and D. Berson, M. Mehta, E. Bienenstock and members of the Aizenman lab for helpful discussion. K.G.P. is supported by an National Research Service Award from the US National Eye Institute, and C.D.A. is supported by a generous gift from the Klingenstein Foundation and the American Heart Association.

Author information

Authors and Affiliations

Authors

Contributions

K.G.P., W.D. and C.D.A. all contributed to the experimental design, electrophysiology experiments, data analysis and preparation of the figures. K.G.P. and C.D.A. also prepared the manuscript.

Corresponding author

Correspondence to Carlos D Aizenman.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–3 and Methods (PDF 280 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pratt, K., Dong, W. & Aizenman, C. Development and spike timing–dependent plasticity of recurrent excitation in the Xenopus optic tectum. Nat Neurosci 11, 467–475 (2008). https://doi.org/10.1038/nn2076

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2076

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing