Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain

Abstract

Prevailing notions of cerebral vascularization imply that blood vessels sprout passively into the brain parenchyma from pial vascular plexuses to meet metabolic needs of growing neuronal populations. Endothelial cells, building blocks of blood vessels, are thought to be homogeneous in the brain with respect to their origins, gene expression patterns and developmental mechanisms. These current notions that cerebral angiogenesis is regulated by local environmental signals contrast with current models of cell-autonomous regulation of neuronal development. Here we demonstrate that telencephalic angiogenesis in mice progresses in an orderly, ventral-to-dorsal gradient regulated by compartment-specific homeobox transcription factors. Our data offer new perspectives on intrinsic regulation of angiogenesis in the embryonic telencephalon, call for a revision of the current models of telencephalic angiogenesis and support novel roles for endothelial cells in brain development.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Angiogenesis gradients in the embryonic telencephalon.
Figure 2: Dorsal periventricular vessels originate from the ventral telencephalon.
Figure 3: Ventral-to-dorsal migration of endothelial cells.
Figure 4: Endothelial cells express homeobox transcription factors.
Figure 5: Nkx2.1 and Dlx1/2 regulate telencephalic angiogenesis.
Figure 6: Ventral homeobox genes regulate endothelial cell migration and proliferation.
Figure 7: Telencephalic angiogenesis in SeyDey mutant mice.
Figure 8: Cell autonomous regulation of endothelial cell migration by Nkx2.1 and Pax6.

Similar content being viewed by others

References

  1. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  PubMed  Google Scholar 

  2. Kurz, H. Physiology of angiogenesis. J. Neurooncol. 50, 17–35 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Strong, L.H. The early embryonic pattern of internal vascularization of the mammalian cerebral cortex. J. Comp. Neurol. 123, 121–138 (1964).

    Article  CAS  PubMed  Google Scholar 

  4. Carmeliet, P. & Tessier-Lavigne, M. Common mechanisms of nerve and blood vessel wiring. Nature 436, 193–200 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. Hogan, K.A., Ambler, C.A., Chapman, D.L. & Bautch, V.L. The neural tube patterns vessels developmentally using the VEGF signaling pathway. Development 131, 1503–1513 (2004).

    Article  CAS  PubMed  Google Scholar 

  6. Keynes, R. & Lumsden, A. Segmentation and the origin of regional diversity in the vertebrate nervous system. Neuron 4, 1–9 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. Puelles, L. & Rubenstein, J.L.R. Expression patterns of homeobox and other putative regulatory genes in the embryonic mouse forebrain suggests a neuromeric organization. Trends Neurosci. 16, 472–479 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Keynes, R.J. & Stern, C.D. Mechanisms of vertebrate segmentation. Development 103, 413–429 (1988).

    CAS  PubMed  Google Scholar 

  9. Plate, K.H. Mechanisms of angiogenesis in the brain. J. Neuropathol. Exp. Neurol. 58, 313–320 (1999).

    Article  CAS  PubMed  Google Scholar 

  10. Greenberg, D.A. & Jin, K. From angiogenesis to neuropathology. Nature 438, 954–959 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Hiruma, T., Nakajima, Y. & Nakamura, H. Development of pharyngeal arch arteries in early mouse embryo. J. Anat 201, 15–29 (2002).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Sussel, L., Marin, O., Kimura, S. & Rubenstein, J.L. Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal molecular respecification within the basal telencephalon: evidence for a transformation of the pallidum into the striatum. Development 126, 3359–3370 (1999).

    CAS  PubMed  Google Scholar 

  13. Supèr, H., Martínez, A. & Soriano, E. Degeneration of Cajal-Retzius cells in the developing cerebral cortex of the mouse after ablation of meningeal cells by 6-hydroxydopamine. Devel. Brain Res. 98, 15–20 (1997).

    Article  Google Scholar 

  14. Bayer, S.A. & Altman, J. Directions in neurogenetic gradients and patterns of anatomical connections in the telencephalon. Prog. Neurobiol. 29, 57–106 (1987).

    Article  CAS  PubMed  Google Scholar 

  15. Bayer, S.A. & Altman, J. Neocortical Development (Raven Press, New York, 1991).

    Google Scholar 

  16. Takahashi, T., Nowakowski, R.S. & Caviness, V.S., Jr . The leaving or Q fraction of the murine cerebral proliferative epithelium: a general model of neocortical neuronogenesis. J. Neurosci. 16, 6183–6196 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Takahashi, T., Goto, T., Miyama, S., Nowakowski, R.S. & Caviness, V.S., Jr . Sequence of neuron origin and neocortical laminar fate: relation to cell cycle of origin in the developing murine cerebral wall. J. Neurosci. 19, 10357–10371 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Anderson, S.A., Eisenstat, D.D., Shi, L. & Rubenstein, J.L.R. Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes. Science 278, 474–476 (1997).

    Article  CAS  PubMed  Google Scholar 

  19. De Carlos, J.A., López-Mascaraque, L. & Valverde, F. Dynamics of cell migration from the lateral ganglionic eminence in the rat. J. Neurosci. 16, 6146–6156 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubenstein, J.L. et al. Genetic control of cortical regionalization and connectivity. Cereb. Cortex 9, 524–532 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Anderson, S., Mione, M., Yun, K. & Rubenstein, J.L.R. Differential origins of neocortical projection and local circuit neurons: role of Dlx genes in neocortical interneuronogenesis. Cereb. Cortex 9, 646–654 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Eisenstat, D.D. et al. DLX-1, DLX-2, and DLX-5 expression define distinct stages of basal forebrain differentiation. J. Comp. Neurol. 414, 217–237 (1999).

    Article  CAS  PubMed  Google Scholar 

  23. Puelles, L. & Rubenstein, J.L. Forebrain gene expression domains and the evolving prosomeric model. Trends Neurosci. 26, 469–476 (2003).

    Article  CAS  PubMed  Google Scholar 

  24. Stoykova, A., Fritsch, R., Walther, C. & Gruss, P. Forebrain patterning defects in Small eye mutant mice. Development 122, 3453–3465 (1996).

    CAS  PubMed  Google Scholar 

  25. Stoykova, A., Treichel, D., Hallonet, M. & Gruss, P. Pax6 modulates the dorsoventral patterning of the mammalian telencephalon. J. Neurosci. 20, 8042–8050 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Hill, R.E. et al. Mouse Small eye results from mutations in a paired-like homeobox-containing gene. Nature 354, 522–525 (1991).

    Article  CAS  PubMed  Google Scholar 

  27. Schedl, A. et al. Influence of PAX6 gene dosage on development: overexpression causes severe eye abnormalities. Cell 86, 71–82 (1996).

    Article  CAS  PubMed  Google Scholar 

  28. Fishell, G., Mason, C.A. & Hatten, M.E. Dispersion of neural progenitors within the germinal zones of the forebrain. Nature 362, 636–638 (1993).

    Article  CAS  PubMed  Google Scholar 

  29. Ghanem, N. et al. Distinct cis-regulatory elements from the Dlx1/Dlx2 locus mark different progenitor cell populations in the ganglionic eminences and different subtypes of adult cortical interneurons. J. Neurosci. 27, 5012–5022 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nery, S., Corbin, J.G. & Fishell, G. Dlx2 progenitor migration in wild type and Nkx2.1 mutant telencephalon. Cereb. Cortex 13, 895–903 (2003).

    Article  PubMed  Google Scholar 

  31. Marin, O., Anderson, S.A. & Rubenstein, J.L. Origin and molecular specification of striatal interneurons. J. Neurosci. 20, 6063–6076 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Caviness, V.S., Jr . Neocortical histogenesis in normal and reeler mice: a developmental study based upon (3H) thymidine autoradiography. Devel. Brain Res. 4, 293–302 (1982).

    Article  Google Scholar 

  33. Rakic, P. & Caviness, V.S., Jr . Cortical development: view from neurological mutants two decades later. Neuron 14, 1101–1104 (1995).

    Article  CAS  PubMed  Google Scholar 

  34. Breier, G., Albrecht, U., Sterrer, S. & Risau, W. Expression of vascular endothelial growth factor during embryonic angiogenesis and endothelial cell differentiation. Development 114, 521–532 (1992).

    CAS  PubMed  Google Scholar 

  35. Ericson, J. et al. Sonic hedgehog induces the differentiation of ventral forebrain neurons: a common signal for ventral patterning within the neural tube. Cell 81, 747–756 (1995).

    Article  CAS  PubMed  Google Scholar 

  36. Shimamura, K., Martinez, S., Puelles, L. & Rubenstein, J.L.R. Patterns of gene expression in the neural plate and neural tube subdivide the embryonic forebrain into transverse and longitudinal domains. Dev. Neurosci. 19, 88–96 (1997).

    Article  CAS  PubMed  Google Scholar 

  37. Cohen, M.M., Jr . Craniofacial anomalies: clinical and molecular perspectives. Ann. Acad. Med. Singapore 32, 244–251 (2003).

    PubMed  Google Scholar 

  38. Yun, K. et al. Modulation of the notch signaling by Mash1 and Dlx1/2 regulates sequential specification and differentiation of progenitor cell types in the subcortical telencephalon. Development 129, 5029–5040 (2002).

    CAS  PubMed  Google Scholar 

  39. Ambati, B.K. et al. Corneal avascularity is due to soluble VEGF receptor-1. Nature 443, 993–997 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kusakabe, T. et al. Thyroid-specific enhancer-binding protein/NKX2.1 is required for the maintenance of ordered architecture and function of the differentiated thyroid. Mol. Endocrinol. 20, 1796–1809 (2006).

    Article  CAS  PubMed  Google Scholar 

  41. Yuan, B. et al. Inhibition of distal lung morphogenesis in Nkx2.1(−/−) embryos. Dev. Dyn. 217, 180–190 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Ben-Ari, Y., Khalilov, I., Represa, A. & Gozlan, H. Interneurons set the tune of developing networks. Trends Neurosci. 27, 422–427 (2004).

    Article  CAS  PubMed  Google Scholar 

  43. Rakic, P. Specification of cerebral cortical areas. Science 241, 170–176 (1988).

    Article  CAS  PubMed  Google Scholar 

  44. Gerfen, C.R. The neostriatal mosaic: striatal patch-matrix organization is related to cortical lamination. Science 246, 385–388 (1989).

    Article  CAS  PubMed  Google Scholar 

  45. Bhide, P.G. Cell cycle kinetics in the embryonic mouse corpus striatum. J. Comp. Neurol. 374, 506–522 (1996).

    Article  CAS  PubMed  Google Scholar 

  46. Sheth, A.N. & Bhide, P.G. Concurrent cellular output from two proliferative populations in the early embryonic mouse corpus striatum. J. Comp. Neurol. 383, 220–230 (1997).

    Article  CAS  PubMed  Google Scholar 

  47. Kimura, S. et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev. 10, 60–69 (1996).

    Article  CAS  PubMed  Google Scholar 

  48. Motoike, T. et al. Universal GFP reporter for the study of vascular development. Genesis 28, 75–81 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Pfaffl, M.W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res. 29, e45 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank S. Anderson (Weill-Cornell Medical College) for sharing with us the Nkx2.1+/− line. We gratefully acknowledge technical assistance by I. Bagayev (confocal microscope), L. Zagachin (real-time PCR) and M. Waring (FACS). This work was supported by RO1NS43246, RO1DA020796 and P30NS045776 to P.G.B.

Author information

Authors and Affiliations

Authors

Contributions

A.V. and P.G.B. designed the experiments and wrote the manuscript. A.V. conducted the experiments. J.E.L. and J.L.R.R. provided Dlx1/2 mutant and wild-type embryos; J.E.C. supplied reeler mutant and wild-type embryos and all three commented on earlier versions of the manuscript.

Corresponding authors

Correspondence to Anju Vasudevan or Pradeep G Bhide.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 673 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasudevan, A., Long, J., Crandall, J. et al. Compartment-specific transcription factors orchestrate angiogenesis gradients in the embryonic brain. Nat Neurosci 11, 429–439 (2008). https://doi.org/10.1038/nn2074

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2074

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing