Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling

Abstract

Netrins are prototypical axon guidance cues whose attractive signaling requires the small GTPase Rac1. It remains unclear how Rac1 is regulated in the netrin pathway. DOCK180 is a member of a new family of guanine nucleotide exchange factors for Rho GTPases. Here we provide evidence implicating DOCK180 in netrin signal transduction. Netrin promoted the formation of a protein-protein interaction complex that included DOCK180 and the netrin receptor deleted in colorectal carcinoma (DCC). Inhibition of DOCK180 reduced activation of Rac1 by netrin. Both axon outgrowth and axon attraction induced by netrin were inhibited after DOCK180 knockdown in vertebrate neurons. The in vivo functional role of DOCK180 was demonstrated by its requirement for projection of commissural axons in the neural tube. These findings indicate that netrin stimulation recruits DOCK180 through DCC, which then activates small GTPases, suggesting an essential role for DOCK180 in mediating attractive responses by neurons to netrin-1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subcellular localization of DOCK180, DCC and Rac1 in the growth cones of primary neurons.
Figure 2: Interaction between DOCK180 and DCC.
Figure 3: Involvement of DOCK180 in Rac1 activation by netrin-1.
Figure 4: DOCK180 shRNA inhibited axon outgrowth induced by netrin.
Figure 5: Inhibition of netrin-1–induced turning of commissural axons by DOCK180-ISP and DOCK180 siRNA.
Figure 6: DOCK180 siRNA caused in vivo misguidance of commissural axons.

Similar content being viewed by others

References

  1. Cajal, S.R.Y. Cajal's Degeneration and Regeneration of the Nervous System (ed. May, R.M.) (Oxford University Press, Oxford, 1991).

    Book  Google Scholar 

  2. Merz, D.C. & Culotti, J.G. Genetic analysis of growth cone migrations in Caenorhabditis elegans. J. Neurobiol. 44, 281–288 (2000).

    Article  CAS  Google Scholar 

  3. Guan, K.L. & Rao, Y. Signalling mechanisms mediating neuronal responses to guidance cues. Nat. Rev. Neurosci. 4, 941–956 (2003).

    Article  CAS  Google Scholar 

  4. Serafini, T. et al. The netrins define a family of axon outgrowth–promoting proteins homologous to C. elegans UNC-6. Cell 78, 409–424 (1994).

    Article  CAS  Google Scholar 

  5. Kolodziej, P.A. et al. Frazzled encodes a Drosophila member of the DCC immunoglobulin subfamily and is required for CNS and motor axon guidance. Cell 87, 197–204 (1996).

    Article  CAS  Google Scholar 

  6. Mitchell, K.J. et al. Genetic analysis of netrin genes in Drosophila: netrins guide CNS commissural axons and peripheral motor axons. Neuron 17, 203–215 (1996).

    Article  CAS  Google Scholar 

  7. Hedgecock, E.M., Culotti, J.G. & Hall, D.H. The unc-5, unc-6 and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans. Neuron 4, 61–85 (1990).

    Article  CAS  Google Scholar 

  8. Ishii, N., Wadsworth, W.G., Stern, B.D., Culotti, J.G. & Hedgecock, E.M. UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans. Neuron 9, 873–881 (1992).

    Article  CAS  Google Scholar 

  9. Tessier-Lavigne, M., Placzek, M., Lumsden, A.G., Dodd, J. & Jessell, T.M. Chemotropic guidance of developing axons in the mammalian central nervous system. Nature 336, 775–778 (1988).

    Article  CAS  Google Scholar 

  10. Kennedy, T.E., Serafini, T., de la Torre, J.R. & Tessier-Lavigne, M. Netrins are diffusible chemotropic factors for commissural axons in the embryonic spinal cord. Cell 78, 425–435 (1994).

    Article  CAS  Google Scholar 

  11. Leung-Hagesteijn, C. UNC-5, a transmembrane protein with immunoglobulin and thrombospondin type 1 domains, guides cell and pioneer axon migrations in C. elegans. Cell 71, 289–299 (1992).

    Article  CAS  Google Scholar 

  12. Chan, S.S. et al. UNC-40, a C. elegans homolog of DCC (deleted in colorectal cancer), is required in motile cells responding to UNC-6 netrin cues. Cell 87, 187–195 (1996).

    Article  CAS  Google Scholar 

  13. Hamelin, M., Zhou, Y., Su, M.W., Scott, I.M. & Culotti, J.G. Expression of the UNC-5 guidance receptor in the touch neurons of C. elegans steers their axons dorsally. Nature 364, 327–330 (1993).

    Article  CAS  Google Scholar 

  14. Keino-Masu, K. et al. Deleted in colorectal cancer (DCC) encodes a netrin receptor. Cell 87, 175–185 (1996).

    Article  CAS  Google Scholar 

  15. Fazeli, A. et al. Phenotype of mice lacking functional Deleted in colorectal cancer (Dcc) gene. Nature 386, 796–804 (1997).

    Article  CAS  Google Scholar 

  16. Hong, K. et al. A ligand-gated association between cytoplasmic domains of UNC5 and DCC family receptors converts netrin-induced growth cone attraction to repulsion. Cell 97, 927–941 (1999).

    Article  CAS  Google Scholar 

  17. Merz, D.C., Zheng, H., Killeen, M.T., Krizus, A. & Culotti, J.G. Multiple signaling mechanisms of the UNC-6/netrin receptors UNC-5 and UNC-40/DCC in vivo. Genetics 158, 1071–1080 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Keleman, K. & Dickson, B.J. Short- and long-range repulsion by the Drosophila Unc5 netrin receptor. Neuron 32, 605–617 (2001).

    Article  CAS  Google Scholar 

  19. Shekarabi, M. & Kennedy, T.E. The netrin-1 receptor DCC promotes filopodia formation and cell spreading by activating Cdc42 and Rac1. Mol. Cell. Neurosci. 19, 1–17 (2002).

    Article  CAS  Google Scholar 

  20. Li, X., Saint-Cyr-Proulx, E., Aktories, K. & Lamarche-Vane, N. Rac1 and Cdc42, but not RhoA or Rho kinase, activities are required for neurite outgrowth induced by the Netrin-1 receptor DCC (deleted in colorectal cancer) in N1E–115 neuroblastoma cells. J. Biol. Chem. 277, 15207–15214 (2002).

    Article  CAS  Google Scholar 

  21. Li, X. et al. The adaptor protein Nck-1 couples the netrin-1 receptor DCC (deleted in colorectal cancer) to the activation of the small GTPase Rac1 through an atypical mechanism. J. Biol. Chem. 277, 37788–37797 (2002).

    Article  CAS  Google Scholar 

  22. Causeret, F. et al. Distinct roles of Rac1/Cdc42 and Rho/Rock for axon outgrowth and nucleokinesis of precerebellar neurons toward netrin 1. Development 131, 2841–2852 (2004).

    Article  CAS  Google Scholar 

  23. Gitai, Z., Yu, T.W., Lundquist, E.A., Tessier-Lavigne, M. & Bargmann, C.I. The netrin receptor UNC-40/DCC stimulates axon attraction and outgrowth through enabled and, in parallel, Rac and UNC-115/AbLIM. Neuron 37, 53–65 (2003).

    Article  CAS  Google Scholar 

  24. Shamah, S.M. EphA receptors regulate growth cone dynamics through the novel guanine nucleotide exchange factor ephexin. Cell 105, 233–244 (2001).

    Article  CAS  Google Scholar 

  25. Aurandt, J., Vikis, H.G., Gutkind, J.S., Ahn, N. & Guan, K.L. The semaphorin receptor plexin-B1 signals through a direct interaction with the Rho-specific nucleotide exchange factor, LARG. Proc. Natl. Acad. Sci. USA 99, 12085–12090 (2002).

    Article  CAS  Google Scholar 

  26. Swiercz, J.M., Kuner, R., Behrens, J. & Offermanns, S. Plexin-B1 directly interacts with PDZ-RhoGEF/LARG to regulate RhoA and growth cone morphology. Neuron 35, 51–63 (2002).

    Article  CAS  Google Scholar 

  27. Wong, K. et al. Signal transduction in neuronal migration: roles of GTPase activating proteins and the small GTPase Cdc42 in the Slit-Robo pathway. Cell 107, 209–221 (2001).

    Article  CAS  Google Scholar 

  28. Meller, N., Merlot, S. & Guda, C. CZH proteins: a new family of Rho-GEFs. J. Cell Sci. 118, 4937–4946 (2005).

    Article  CAS  Google Scholar 

  29. Brugnera, E. Unconventional Rac-GEF activity is mediated through the Dock180-ELMO complex. Nat. Cell Biol. 4, 574–582 (2002).

    Article  CAS  Google Scholar 

  30. Cote, J.F. & Vuori, K. Identification of an evolutionarily conserved superfamily of DOCK180-related proteins with guanine nucleotide exchange activity. J. Cell Sci. 115, 4901–4913 (2002).

    Article  CAS  Google Scholar 

  31. Meller, N., Irani-Tehrani, M., Kiosses, W.B., Del Pozo, M.A. & Schwartz, M.A. Zizimin1, a novel Cdc42 activator, reveals a new GEF domain for Rho proteins. Nat. Cell Biol. 4, 639–647 (2002).

    Article  CAS  Google Scholar 

  32. Hasegawa, H. et al. DOCK180, a major CRK-binding protein, alters cell morphology upon translocation to the cell membrane. Mol. Cell. Biol. 16, 1770–1776 (1996).

    Article  CAS  Google Scholar 

  33. Wu, Y.C. & Horvitz, H.R. C. elegans phagocytosis and cell-migration protein CED-5 is similar to human DOCK180. Nature 392, 501–504 (1998).

    Article  CAS  Google Scholar 

  34. Erickson, M.R., Galletta, B.J. & Abmayr, S.M. Drosophila myoblast city encodes a conserved protein that is essential for myoblast fusion, dorsal closure and cytoskeletal organization. J. Cell Biol. 138, 589–603 (1997).

    Article  CAS  Google Scholar 

  35. Nolan, K.M. et al. Myoblast city, the Drosophila homolog of DOCK180/CED-5, is required in a Rac signaling pathway utilized for multiple developmental processes. Genes Dev. 12, 3337–3342 (1998).

    Article  CAS  Google Scholar 

  36. Kiyokawa, E. et al. Activation of Rac1 by a Crk SH3-binding protein, DOCK180. Genes Dev. 12, 3331–3336 (1998).

    Article  CAS  Google Scholar 

  37. Cote, J.F., Motoyama, A.B., Bush, J.A. & Vuori, K. A novel and evolutionarily conserved PtdIns(3,4,5)P3-binding domain is necessary for DOCK180 signaling. Nat. Cell Biol. 7, 797–807 (2005).

    Article  CAS  Google Scholar 

  38. Zhou, Z., Caron, E., Hartwieg, E., Hall, A. & Horvitz, H.R. The C. elegans PH domain protein CED-12 regulates cytoskeletal reorganization via a Rho/Rac GTPase signaling pathway. Dev. Cell 1, 477–489 (2001).

    Article  CAS  Google Scholar 

  39. Namekata, K., Enokido, Y., Iwasawa, K. & Kimura, H. MOCA induces membrane spreading by activating Rac1. J. Biol. Chem. 279, 14331–14337 (2004).

    Article  CAS  Google Scholar 

  40. Nishihara, H. et al. DOCK2 associates with CrkL and regulates Rac1 in human leukemia cell lines. Blood 100, 3968–3974 (2002).

    Article  CAS  Google Scholar 

  41. Serafini, T. et al. Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell 87, 1001–1014 (1996).

    Article  CAS  Google Scholar 

  42. Shekarabi, M. et al. Deleted in colorectal cancer binding netrin-1 mediates cell substrate adhesion and recruits Cdc42, Rac1, Pak1 and N-WASP into an intracellular signaling complex that promotes growth cone expansion. J. Neurosci. 25, 3132–3141 (2005).

    Article  CAS  Google Scholar 

  43. Liu, G. et al. Netrin requires focal adhesion kinase and Src family kinases for axon outgrowth and attraction. Nat. Neurosci. 7, 1222–1232 (2004).

    Article  CAS  Google Scholar 

  44. Stoeckli, E.T., Sonderegger, P., Pollerberg, G.E. & Landmesser, L.T. Interference with axonin-1 and NrCAM interactions unmasks a floor-plate activity inhibitory for commissural axons. Neuron 18, 209–221 (1997).

    Article  CAS  Google Scholar 

  45. Li, W. et al. Activation of FAK and Src are receptor-proximal events required for netrin signaling. Nat. Neurosci. 7, 1213–1221 (2004).

    Article  CAS  Google Scholar 

  46. Ren, X.R. et al. Focal adhesion kinase in netrin-1 signaling. Nat. Neurosci. 7, 1204–1212 (2004).

    Article  CAS  Google Scholar 

  47. Liu, G. et al. p130CAS is required for netrin signaling and commissural axon guidance. J. Neurosci. 27, 957–968 (2007).

    Article  Google Scholar 

  48. Lu, M. et al. A steric-inhibition model for regulation of nucleotide exchange via the Dock180 family of GEFs. Curr. Biol. 15, 371–377 (2005).

    Article  CAS  Google Scholar 

  49. Grimsley, C.M. et al. Dock180 and ELMO1 proteins cooperate to promote evolutionarily conserved Rac-dependent cell migration. J. Biol. Chem. 279, 6087–6097 (2004).

    Article  CAS  Google Scholar 

  50. Wu, Y.C. et al. Distinct rac activation pathways control Caenorhabditis elegans cell migration and axon outgrowth. Dev. Biol. 250, 145–155 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to K.S. Ravichandran and K. Vuori for DOCK180 constructs, to E.T. Stoeckli for the antibody to axonin-1, to E. Kiyokawa for an antibody to DOCK180, to R.J. Miller and P.T. Toth for help with confocal imaging, and to the US National Institutes of Health for support (to Y.R., J.W. and W.X.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jane Wu or Yi Rao.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4 (PDF 218 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Gao, X., Liu, G. et al. Netrin signal transduction and the guanine nucleotide exchange factor DOCK180 in attractive signaling. Nat Neurosci 11, 28–35 (2008). https://doi.org/10.1038/nn2022

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn2022

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing