Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors

Abstract

The polarity and adhesion of radial glial cells (RGCs), which function as progenitors and migrational guides for neurons, are critical for morphogenesis of the cerebral cortex. These characteristics largely depend on cadherin-based adherens junctions, which anchor apical end-feet of adjacent RGCs to each other at the ventricular surface. Here, we show that mouse numb and numb-like are required for maintaining radial glial adherens junctions. Numb accumulates in the apical end-feet, where it localizes to adherens junction–associated vesicles and interacts with cadherins. Numb and Numbl inactivation in RGCs decreases proper basolateral insertion of cadherins and disrupts adherens junctions and polarity, leading to progenitor dispersion and disorganized cortical lamination. Conversely, overexpression of Numb prolongs RGC polarization, in a cadherin-dependent manner, beyond the normal neurogenic period. Thus, by regulating RGC adhesion and polarity, Numb and Numbl are required for the tissue architecture of neurogenic niches and the cerebral cortex.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Numb is enriched in apical end-feet of interphase RGCs.
Figure 2: Numb localizes along the basolateral membrane and to vesicular structures near adherens junctions of interphase RGCs.
Figure 3: Numb colocalizes and interacts with cadherin-catenin adhesion complex.
Figure 4: Disruption of neuroepithelial integrity, adherens junctions and actin organization in Numb and Numbl dKO VZ.
Figure 5: Altered subcellular localization of cadherins in Numb and Numbl dKO VZ.
Figure 6: Loss of neuroepithelial integrity and adherens junctions in RGCs expressing Numb and Numbl, Cdh1 or Cdh2 shRNAs.
Figure 7: Numb and Numbl promote RGC polarity in a cadherin-dependent manner.
Figure 8: Effects of manipulating Numb and Numbl expression on the sequential generation of neocortical cell types.

Similar content being viewed by others

References

  1. Fishell, G. & Kriegstein, A.R. Neurons from radial glia: the consequences of asymmetric inheritance. Curr. Opin. Neurobiol. 13, 34–41 (2003).

    Article  CAS  Google Scholar 

  2. Götz, M. & Huttner, W.B. The cell biology of neurogenesis. Nat. Rev. Mol. Cell Biol. 6, 777–788 (2005).

    Article  Google Scholar 

  3. Rakic, P. Developmental and evolutionary adaptations of cortical radial glia. Cereb. Cortex 13, 541–549 (2003).

    Article  Google Scholar 

  4. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  5. Chenn, A. & McConnell, S.K. Intrinsic polarity of mammalian neuroepithelial cells. Mol. Cell. Neurosci. 11, 183–193 (1998).

    Article  CAS  Google Scholar 

  6. Kadowaki, M. et al. N-cadherin mediates cortical organization in the mouse brain. Dev. Biol. 304, 22–33 (2007).

    Article  CAS  Google Scholar 

  7. Perez–Moreno, M., Jamora, C. & Fuchs, E. Sticky business: orchestrating cellular signals at adherens junctions. Cell 112, 535–548 (2003).

    Article  Google Scholar 

  8. Takeichi, M. The cadherin superfamily in neuronal connections and interactions. Nat. Rev. Neurosci. 8, 11–20 (2007).

    Article  CAS  Google Scholar 

  9. Cavallaro, U. & Christofori, G. Cell adhesion and signalling by cadherins and IgCAMs in cancer. Nat. Rev. Cancer 4, 118–132 (2004).

    Article  CAS  Google Scholar 

  10. Mission, J.P., Takahashi, T. & Caviness, V.S., Jr Ontogeny of radial and other astroglial cells in murine cerebral cortex. Glia 4, 138–148 (1991).

    Article  CAS  Google Scholar 

  11. Schmid, R.S. et al. Neuregulin 1–erbB2 signaling is required for the establishment of radial glia and their transformation into astrocytes in cerebral cortex. Proc. Natl. Acad. Sci. USA 100, 4251–4256 (2003).

    Article  CAS  Google Scholar 

  12. Smith, K.M. et al. Midline radial glia translocation and corpus callosum formation require Fgf signaling. Nat. Neurosci. 9, 787–797 (2006).

    Article  CAS  Google Scholar 

  13. Alvarez-Buylla, A. & Lim, D.A. For the long run: maintaining germinal niches in the adult brain. Neuron 41, 683–686 (2004).

    Article  CAS  Google Scholar 

  14. Taylor, M.D. et al. Radial glia cells are candidate stem cells of ependymoma. Cancer Cell 8, 323–335 (2005).

    Article  CAS  Google Scholar 

  15. Doe, C.Q., Fuerstenberg, S. & Peng, C.Y. Neural stem cells: from fly to vertebrates. J. Neurobiol. 36, 111–127 (1998).

    Article  CAS  Google Scholar 

  16. Jan, Y.N. & Jan, L.Y. Asymmetric cell division in the Drosophila nervous system. Nat. Rev. Neurosci. 2, 772–779 (2001).

    Article  CAS  Google Scholar 

  17. Berdnik, D., Torok, T., Gonzalez–Gaitan, M. & Knoblich, J.A. The endocytic protein α-Adaptin is required for Numb-mediated asymmetric cell division in Drosophila. Dev. Cell 3, 221–231 (2002).

    Article  CAS  Google Scholar 

  18. Santolini, E. et al. Numb is an endocytic protein. J. Cell Biol. 151, 1345–1352 (2000).

    Article  CAS  Google Scholar 

  19. Smith, C.A., Dho, S.E., Donaldson, J., Teass, U. & McGlade, C.J. The cell fate determinant numb interacts with EHD/Rme-1 family proteins and has a role in endocytic recycling. Mol. Biol. Cell 15, 3698–3708 (2004).

    Article  CAS  Google Scholar 

  20. Zhong, W., Feder, J.N., Jiang, M.M., Jan, L.Y. & Jan, Y.N. Asymmetric localization of a mammalian numb homolog during mouse cortical neurogenesis. Neuron 17, 43–53 (1996).

    Article  CAS  Google Scholar 

  21. Roncarati, R. et al. The γ-secretase–generated intracellular domain of β-amyloid precursor protein binds Numb and inhibits Notch signaling. Proc. Natl. Acad. Sci. USA 99, 7102–7107 (2002).

    Article  CAS  Google Scholar 

  22. Sestan, N., Artavanis-Tsakonas, S. & Rakic, P. Notch signaling mediates contact-dependent inhibition of cortical neurite growth. Science 286, 741–746 (1999).

    Article  CAS  Google Scholar 

  23. Huang, E.J. et al. Targeted deletion of numb and numblike in sensory neurons reveals their essential functions in axon arborization. Genes Dev. 19, 138–151 (2005).

    Article  CAS  Google Scholar 

  24. Nishimura, T. et al. Role of numb in dendritic spine development with a Cdc42 GEF intersectin and EphB2. Mol. Biol. Cell 17, 1273–1285 (2006).

    Article  CAS  Google Scholar 

  25. Li, H.S. et al. Inactivation of Numb and Numblike in embryonic dorsal forebrain impairs neurogenesis and disrupts cortical morphogenesis. Neuron 40, 1105–1118 (2003).

    Article  CAS  Google Scholar 

  26. Petersen, P.H., Zou, K., Krauss, S. & Zhong, W. Continuing role for mouse Numb and Numbl in maintaining progenitor cells during cortical neurogenesis. Nat. Neurosci. 7, 803–811 (2004).

    Article  CAS  Google Scholar 

  27. Kosodo, Y. et al. Asymmetric distribution of the apical plasma membrane during neurogenic divisions of mammalian neuroepithelial cells. EMBO J. 23, 2314–2324 (2004).

    Article  CAS  Google Scholar 

  28. Kuo, C.T. et al. Postnatal deletion of Numb/Numblike reveals repair and remodeling capacity in the subventricular neurogenic niche. Cell 127, 1253–1264 (2006).

    Article  CAS  Google Scholar 

  29. Bryant, D.M. & Stow, J.L. The ins and outs of E-cadherin trafficking. Trends Cell Biol. 14, 427–434 (2004).

    Article  CAS  Google Scholar 

  30. Lock, J.G. & Stow, J.L. Rab11 in recycling endosomes regulates the sorting and basolateral transport of E-cadherin. Mol. Biol. Cell 16, 1744–1755 (2005).

    Article  CAS  Google Scholar 

  31. Paterson, A.D., Parton, R.G., Ferguson, C., Stow, J.L. & Yap, A.S. Characterization of E-cadherin endocytosis in isolated MCF-7 and Chinese hamster ovary cells: the initial fate of unbound E-cadherin. J. Biol. Chem. 278, 21050–21057 (2003).

    Article  CAS  Google Scholar 

  32. Lien, W.H., Klezovitch, O., Fernandez, T.E., Delrow, J. & Vasioukhin, V. αE-Catenin controls cerebral cortical size by regulating the Hedgehog signaling pathway. Science 311, 1609–1612 (2006).

    Article  CAS  Google Scholar 

  33. Ganzler-Odenthal, S.I. & Redies, C. Blocking N-cadherin function disrupts the epithelial structure of differentiating neural tissue in the embryonic chicken brain. J. Neurosci. 18, 5415–5425 (1998).

    Article  CAS  Google Scholar 

  34. Machon, O., van den Bout, C.J., Backman, M., Kemler, R. & Krauss, S. Role of β-catenin in the developing cortical and hippocampal neuroepithelium. Neuroscience 122, 129–143 (2003).

    Article  CAS  Google Scholar 

  35. Masai, I. et al. N-cadherin mediates retinal lamination, maintenance of forebrain compartments and patterning of retinal neurites. Development 130, 2479–2494 (2003).

    Article  Google Scholar 

  36. Chen, J.G., Rasin, M.R., Kwan, K.Y. & Sestan, N. Zfp312 is required for subcortical axonal projections and dendritic morphology of deep-layer pyramidal neurons of the cerebral cortex. Proc. Natl. Acad. Sci. USA 102, 17792–17797 (2005).

    Article  CAS  Google Scholar 

  37. Mashayekhi, F. et al. Deficient cortical development in the hydrocephalic Texas (H–Tx) rat: a role for CSF. Brain 125, 1859–1874 (2002).

    Article  Google Scholar 

  38. Khan, O.H., Enno, T.L. & Del Bigio, M.R. Brain damage in neonatal rats following kaolin induction of hydrocephalus. Exp. Neurol. 200, 311–320 (2006).

    Article  CAS  Google Scholar 

  39. Forni, P.E. et al. High levels of Cre expression in neuronal progenitors cause defects in brain development leading to microencephaly and hydrocephaly. J. Neurosci. 26, 9593–9602 (2006).

    Article  CAS  Google Scholar 

  40. Imai, F. et al. Inactivation of aPKC lambda results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 133, 1735–1744 (2006).

    Article  CAS  Google Scholar 

  41. Klezovitch, O., Fernandez, T.E., Tapscott, S.J. & Vasioukhin, V. Loss of cell polarity causes severe brain dysplasia in Lgl1 knockout mice. Genes Dev. 18, 559–571 (2004).

    Article  CAS  Google Scholar 

  42. Smith, C.A. et al. aPKC-mediated phosphorylation regulates asymmetric membrane localization of the cell fate determinant Numb. EMBO J. 26, 468–480 (2007).

    Article  CAS  Google Scholar 

  43. Pece, S. et al. Loss of negative regulation by Numb over Notch is relevant to human breast carcinogenesis. J. Cell Biol. 167, 215–221 (2004).

    Article  CAS  Google Scholar 

  44. Singh, S.K. et al. Identification of human brain tumour initiating cells. Nature 432, 396–401 (2004).

    Article  CAS  Google Scholar 

  45. Langford, L.A. The ultrastructure of the ependymoblastoma. Acta Neuropathol. (Berl.) 71, 136–141 (1986).

    Article  CAS  Google Scholar 

  46. Osanai, M., Yamaguchi, J., Kikuchi, K., Satoh, M. & Sawada, N. Unique cellular features of peripheral primitive neuroectodermal tumor: ultrastructural evidence of its unique cytodifferentiation. Med. Electron Microsc. 37, 193–197 (2004).

    Article  Google Scholar 

  47. Cayouette, M. & Raff, M. Asymmetric segregation of Numb: a mechanism for neural specification from Drosophila to mammals. Nat. Neurosci. 5, 1265–1269 (2002).

    Article  CAS  Google Scholar 

  48. Wakamatsu, Y., Maynard, T.M., Jones, S.U. & Weston, J.A. NUMB localizes in the basal cortex of mitotic avian neuroepithelial cells and modulates neuronal differentiation by binding to NOTCH-1. Neuron 23, 71–81 (1999).

    Article  CAS  Google Scholar 

  49. Gaiano, N. & Fishell, G. The role of Notch in promoting glial and neural stem cell fates. Annu. Rev. Neurosci. 25, 471–490 (2002).

    Article  CAS  Google Scholar 

  50. Yang, X. et al. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269, 81–94 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank M. Pappy for experimental assistance, R. Flavell, M. Grumet, M. Inagaki, R. Medzhitov, J. Miyazaki, A. Nepveu, C. Gottardi, C. Walsh and W. Zhong for reagents, and M. Caplan, K. Herrup, J. LoTurco, A. Louvi and members of the Sestan lab for helpful discussions and comments. This study was supported by grants from the March of Dimes Birth Defects Foundation (FY05–73) and the US National Institutes of Health (HD045481, AG019394, NS047200). M.R.R. was supported by Autism Speaks. K.Y.K. was supported by the Canadian Institutes of Health Research. Y.N.J. and L.Y.J. are Investigators of the Howard Hughes Medical Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Šestan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Numb and Numbl expression in the developing neocortical wall. (PDF 907 kb)

Supplementary Fig. 2

Numb and Cdh1 immunofluorescent staining of the neocortical wall. (PDF 931 kb)

Supplementary Fig. 3

Serial Numb immunogold electron microscopic analysis of E16.5 mitotic RGCs and surrounding apical end-feet of interphase VZ cells. (PDF 1472 kb)

Supplementary Fig. 4

Numbl interacts with Cdh1 in C6-R radial glial-like cells. (PDF 527 kb)

Supplementary Fig. 5

Disruption of neuroepithelial organization and progenitor dispersion in Numb and Numbl dKO embryos. (PDF 1234 kb)

Supplementary Fig. 6

Disorganization of postnatal neurogenesis sites and ectopic neuronal progenitors in the postnatal neocortex of P21 Numb and Numbl dKO mice. (PDF 1212 kb)

Supplementary Fig. 7

Ectopic immature Dcx+ neurons in the postnatal neocortex of Numb and Numbl dKO mice. (PDF 1041 kb)

Supplementary Fig. 8

Disorganized adherens junctions and RGC alignment in the ventricular zone of E16.5 Numb and Numbl dKO embryos. (PDF 1612 kb)

Supplementary Fig. 9

Knocking down Numb, Nubl, Cdh1 and Cdh2 with shRNAs. (PDF 1249 kb)

Supplementary Fig. 10

Forced expression of all Numb isoforms and Numbl promotes radial polarity after the end of neocortical neurogenesis in vivo. (PDF 976 kb)

Supplementary Fig. 11

Astroglial differentiation does not occur prematurely in late Numb and Numbl dKO embryos. (PDF 739 kb)

Supplementary Table 1

Primary antibodies used in this study. (PDF 1157 kb)

Supplementary Table 2

Plasmids and shRNA sequences used in this study. (PDF 294 kb)

Supplementary Methods (PDF 22 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rašin, MR., Gazula, VR., Breunig, J. et al. Numb and Numbl are required for maintenance of cadherin-based adhesion and polarity of neural progenitors. Nat Neurosci 10, 819–827 (2007). https://doi.org/10.1038/nn1924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1924

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing