Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity

Abstract

We report that during cortical development in the mouse embryo, reversion-inducing cysteine-rich protein with Kazal motifs (RECK) critically regulates Notch signaling by antagonizing the ectodomain shedding of Notch ligands, which is mediated by a disintegrin and metalloproteinase domain 10 (ADAM10). In the embryonic brain, RECK is specifically expressed in Nestin-positive neural precursor cells (NPCs). Reck-deficient NPCs undergo precocious differentiation that is associated with downregulated Nestin expression, impaired Notch signaling and defective self-renewal. These phenotypes were substantially rescued either by enhancing Notch signaling or by suppressing endogenous ADAM10 activity. Consequently, we found that RECK regulates the ectodomain shedding of Notch ligands by directly inhibiting the proteolytic activity of ADAM10. This mechanism appeared to be essential for Notch ligands to properly induce Notch signaling in neighboring cells. These findings indicate that RECK is a physiological inhibitor of ADAM10, an upstream regulator of Notch signaling and a critical modulator of brain development.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression patterns of RECK and Nestin in embryonic and postnatal CNS.
Figure 2: Effects of Reck deficiency on CNS development.
Figure 3: Effects of Reck deficiency on neurosphere formation.
Figure 4: Effects of the knockdown of RECK and ADAMs on the neuronal development of NPCs.
Figure 5: Effects of in utero electroporation–mediated depletion of RECK and ADAM10 in embryonic CNS.
Figure 6: Effects of RECK depletion on ADAM10-dependent Delta shedding.
Figure 7: Effects of RECK overexpression on ADAM10-dependent Delta shedding.
Figure 8: Effects of RECK on intercellular Notch signaling.

Similar content being viewed by others

References

  1. Ehebauer, M., Hayward, P. & Martinez-Arias, A. Notch signaling pathway. Sci. STKE 2006, cm7 (2006).

    Article  Google Scholar 

  2. Louvi, A. & Artavanis-Tsakonas, S. Notch signalling in vertebrate neural development. Nat. Rev. Neurosci. 7, 93–102 (2006).

    Article  CAS  Google Scholar 

  3. Yoon, K. & Gaiano, N. Notch signal in the mammalian central nervous system: insights from mouse mutants. Nat. Neurosci. 8, 709–715 (2005).

    Article  CAS  Google Scholar 

  4. Iso, T., Hamamori, Y. & Kedes, L. Notch signaling in vascular development. Arterioscler. Thromb. Vasc. Biol. 23, 543–553 (2003).

    Article  CAS  Google Scholar 

  5. Weinmaster, G. Notch signal transduction: a real rip and more. Curr. Opin. Genet. Dev. 10, 363–369 (2000).

    Article  CAS  Google Scholar 

  6. Ohtsuka, T. et al. Hes1 and Hes5 as notch effectors in mammalian neuronal differentiation. EMBO J. 18, 2196–2207 (1999).

    Article  CAS  Google Scholar 

  7. Temple, S. The development of neural stem cells. Nature 414, 112–117 (2001).

    Article  CAS  Google Scholar 

  8. Yang, P., Baker, K.A. & Hagg, T. The ADAMs family: coordinators of nervous system development, plasticity and repair. Prog. Neurobiol. 79, 73–94 (2006).

    Article  CAS  Google Scholar 

  9. Huovila, A.P., Turner, A.J., Pelto-Huikko, M., Karkkainen, I. & Ortiz, R.M. Shedding light on ADAM metalloproteinases. Trends Biochem. Sci. 30, 413–422 (2005).

    Article  CAS  Google Scholar 

  10. Han, W., Ye, Q. & Moore, M.A. A soluble form of human Delta-like 1 inhibits differentiation of hematopoietic progenitor cells. Blood 95, 1616–1625 (2000).

    CAS  PubMed  Google Scholar 

  11. Varnum-Finney, B. et al. Immobilization of Notch ligand, Delta-1, is required for induction of notch signaling. J. Cell Sci. 113, 4313–4318 (2000).

    CAS  PubMed  Google Scholar 

  12. Small, D. et al. Soluble Jagged 1 represses the function of its transmembrane form to induce the formation of the Src-dependent chord-like phenotype. J. Biol. Chem. 276, 32022–32030 (2001).

    Article  CAS  Google Scholar 

  13. Mishra-Gorur, K., Rand, M.D., Perez-Villamil, B. & Artavanis-Tsakonas, S. Down-regulation of Delta by proteolytic processing. J. Cell Biol. 159, 313–324 (2002).

    Article  CAS  Google Scholar 

  14. LaVoie, M.J. & Selkoe, D.J. The Notch ligands, Jagged and Delta, are sequentially processed by α secretase and presenilin/γ secretase and release signal fragments. J. Biol. Chem. 278, 34427–34437 (2003).

    Article  CAS  Google Scholar 

  15. Lieber, T., Kidd, S. & Young, M.W. kuzbanian-mediated cleavage of Drosophila Notch. Genes Dev. 16, 209–221 (2002).

    Article  CAS  Google Scholar 

  16. Hartmann, D. et al. The disintegrin/metalloprotease ADAM 10 is essential for Notch signalling but not for α secretase activity in fibroblasts. Hum. Mol. Genet. 11, 2615–2624 (2002).

    Article  CAS  Google Scholar 

  17. Mumm, J.S. et al. A ligand-induced extracellular cleavage regulates γ secretase–like proteolytic activation of Notch1. Mol. Cell 5, 197–206 (2000).

    Article  CAS  Google Scholar 

  18. Brou, C. et al. A novel proteolytic cleavage involved in Notch signaling: the role of the disintegrin-metalloprotease TACE. Mol. Cell 5, 207–216 (2000).

    Article  CAS  Google Scholar 

  19. Sahin, U. et al. Distinct roles for ADAM10 and ADAM17 in ectodomain shedding of six EGFR ligands. J. Cell Biol. 164, 769–779 (2004).

    Article  CAS  Google Scholar 

  20. Blobel, C.P. ADAMs: key components in EGFR signalling and development. Nat. Rev. Mol. Cell Biol. 6, 32–43 (2005).

    Article  CAS  Google Scholar 

  21. Karkkainen, I., Rybnikova, E., Pelto-Huikko, M. & Huovila, A.P. Metalloprotease-disintegrin (ADAM) genes are widely and differentially expressed in the adult CNS. Mol. Cell. Neurosci. 15, 547–560 (2000).

    Article  CAS  Google Scholar 

  22. Tokunaga, A. et al. Mapping spatio-temporal activation of Notch signal during neurogenesis and gliogenesis in the developing mouse brain. J. Neurochem. 90, 142–154 (2004).

    Article  CAS  Google Scholar 

  23. Baker, A.H., Edwards, D.R. & Murphy, G. Metalloproteinase inhibitors: biological actions and therapeutic opportunities. J. Cell Sci. 115, 3719–3727 (2002).

    Article  CAS  Google Scholar 

  24. Mohammed, F.F. et al. Abnormal TNF activity in Timp3−/− mice leads to chronic hepatic inflammation and failure of liver regeneration. Nat. Genet. 36, 969–977 (2004).

    Article  CAS  Google Scholar 

  25. Takahashi, C. et al. Regulation of matrix metalloproteinase 9 and inhibition of tumor invasion by the membrane-anchored glycoprotein RECK. Proc. Natl. Acad. Sci. USA 95, 13221–13226 (1998).

    Article  CAS  Google Scholar 

  26. Oh, J. et al. The membrane-anchored MMP inhibitor RECK is a key regulator of extracellular matrix integrity and angiogenesis. Cell 107, 789–800 (2001).

    Article  CAS  Google Scholar 

  27. Miki, T. et al. The reversion-inducing cysteine-rich protein with Kazal motifs (RECK) interacts with membrane type 1 matrix metalloproteinase and CD13/aminopeptidase N and modulates their endocytic pathways. J. Biol. Chem. 282, 12341–12352 (2007).

    Article  CAS  Google Scholar 

  28. Chang, H.C., Cho, C.Y. & Hung, W.C. Downregulation of RECK by promoter methylation correlates with lymph node metastasis in non–small cell lung cancer. Cancer Sci. 98, 169–173 (2007).

    Article  CAS  Google Scholar 

  29. Lendahl, U., Zimmerman, L.B. & McKay, R.D. CNS stem cells express a new class of intermediate filament protein. Cell 60, 585–595 (1990).

    Article  CAS  Google Scholar 

  30. Caccamo, D.V. et al. An immunohistochemical study of neuropeptides and neuronal cytoskeletal proteins in the neuroepithelial component of a spontaneous murine ovarian teratoma. Primitive neuroepithelium displays immunoreactivity for neuropeptides and neuron-associated β tubulin isotype. Am. J. Pathol. 135, 801–813 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Reynolds, B.A., Tetzlaff, W. & Weiss, S. A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes. J. Neurosci. 12, 4565–4574 (1992).

    Article  CAS  Google Scholar 

  32. Itoh, T. et al. Unaltered secretion of β amyloid precursor protein in gelatinase A (matrix metalloproteinase 2)-deficient mice. J. Biol. Chem. 272, 22389–22392 (1997).

    Article  CAS  Google Scholar 

  33. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93, 411–422 (1998).

    Article  CAS  Google Scholar 

  34. Holmbeck, K. et al. MT1-MMP–deficient mice develop dwarfism, osteopenia, arthritis and connective tissue disease due to inadequate collagen turnover. Cell 99, 81–92 (1999).

    Article  CAS  Google Scholar 

  35. Ludwig, A. et al. Metalloproteinase inhibitors for the disintegrin-like metalloproteinases ADAM10 and ADAM17 that differentially block constitutive and phorbol ester–inducible shedding of cell surface molecules. Comb. Chem. High Throughput Screen. 8, 161–171 (2005).

    Article  CAS  Google Scholar 

  36. Dyczynska, E. et al. Proteolytic processing of delta-like 1 by ADAM proteases. J. Biol. Chem. 282, 436–444 (2007).

    Article  CAS  Google Scholar 

  37. Kopan, R. et al. Signal transduction by activated mNotch: importance of proteolytic processing and its regulation by the extracellular domain. Proc. Natl. Acad. Sci. USA 93, 1683–1688 (1996).

    Article  CAS  Google Scholar 

  38. Hsieh, J.J. et al. Truncated mammalian Notch1 activates CBF1/RBPJk-repressed genes by a mechanism resembling that of Epstein-Barr virus EBNA2. Mol. Cell. Biol. 16, 952–959 (1996).

    Article  CAS  Google Scholar 

  39. Hicks, C. et al. Fringe differentially modulates Jagged1 and Delta1 signalling through Notch1 and Notch2. Nat. Cell Biol. 2, 515–520 (2000).

    Article  CAS  Google Scholar 

  40. Oh, J. et al. Mutations in two matrix metalloproteinase genes, MMP-2 and MT1-MMP, are synthetic lethal in mice. Oncogene 23, 5041–5048 (2004).

    Article  CAS  Google Scholar 

  41. Echizenya, M. et al. The membrane-anchored MMP-regulator RECK is a target of myogenic regulatory factors. Oncogene 24, 5850–5857 (2005).

    Article  CAS  Google Scholar 

  42. Zeng, Q. et al. Crosstalk between tumor and endothelial cells promotes tumor angiogenesis by MAPK activation of Notch signaling. Cancer Cell 8, 13–23 (2005).

    Article  CAS  Google Scholar 

  43. Ferres-Marco, D. et al. Epigenetic silencers and Notch collaborate to promote malignant tumours by Rb silencing. Nature 439, 430–436 (2006).

    Article  CAS  Google Scholar 

  44. Reiss, K. et al. ADAM10 cleavage of N-cadherin and regulation of cell-cell adhesion and β catenin nuclear signalling. EMBO J. 24, 742–752 (2005).

    Article  CAS  Google Scholar 

  45. Maretzky, T. et al. ADAM10 mediates E-cadherin shedding and regulates epithelial cell-cell adhesion, migration and β catenin translocation. Proc. Natl. Acad. Sci. USA 102, 9182–9187 (2005).

    Article  CAS  Google Scholar 

  46. Weskamp, G. et al. ADAM10 is a principal `sheddase' of the low-affinity immunoglobulin E receptor CD23. Nat. Immunol. 7, 1293–1298 (2006).

    Article  CAS  Google Scholar 

  47. Nye, J.S., Kopan, R. & Axel, R. An activated Notch suppresses neurogenesis and myogenesis but not gliogenesis in mammalian cells. Development 120, 2421–2430 (1994).

    CAS  PubMed  Google Scholar 

  48. Yamamoto, S. et al. Transcription factor expression and Notch-dependent regulation of neural progenitors in the adult rat spinal cord. J. Neurosci. 21, 9814–9823 (2001).

    Article  CAS  Google Scholar 

  49. Ohtsuka, T., Sakamoto, M., Guillemot, F. & Kageyama, R. Roles of the basic helix-loop-helix genes Hes1 and Hes5 in expansion of neural stem cells of the developing brain. J. Biol. Chem. 276, 30467–30474 (2001).

    Article  CAS  Google Scholar 

  50. Bland, C.E., Kimberly, P. & Rand, M.D. Notch-induced proteolysis and nuclear localization of the Delta ligand. J. Biol. Chem. 278, 13607–13610 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Hayward, S. Itohara, R. Kageyama, M. Nakafuku, E. Nishi, J. Nye, M. Okabe, H. Okano, A. Sehara-Fujisawa, G. Weinmaster, Z. Werb, S. Yamada and A. Zolkiewska for providing materials, R. Bronson for help on pathological examination, C. Blobel, E. Nishi, H. Sato, A. Shamma and T. Sunabori for discussions, A. Sehara-Fujisawa for critical reading of the manuscript, M. Ewen for encouragement, H. Gu, T. Kawai, B.P.K. Mallawaarachchi and A. Nishimoto for technical assistance and A. Miyazaki for secretarial assistance. This work was supported by funds from The 21st Century COE Formation, Public Trust Haraguchi Memorial Cancer Research Fund, Mitsubishi Pharma Research Foundation, Research Grant of the Princess Takamatsu Cancer Research Fund (05-23706) and Japan Ministry of Education, Culture, Sports, Science and Technology. T. Muraguchi would like to thank Japan Student Services Organization and The Naito Foundation for support.

Author information

Authors and Affiliations

Authors

Contributions

C.T. conceived the project. C.T. and T. Muraguchi designed the experiments. T. Muraguchi generated most of the data. Y.T. purified proteins and performed kinetic assays. T.O. performed in utero electroporation, which T. Muraguchi analyzed. S.K. provided Supplementary Figure 5c. A.L. provided synthetic metalloprotease inhibitors. C.T. wrote most of the manuscript. All authors substantially contributed to this work.

Corresponding author

Correspondence to Chiaki Takahashi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

The neural phenotype in Reck;Mmp-2;Mmp-9 triple knockout mice. (PDF 6585 kb)

Supplementary Fig. 2

BrdU incorporation to NPCs analyzed in Figure 4. (PDF 789 kb)

Supplementary Fig. 3

Assessment of the off-target effects of shRNAs used for analyses in Figure 4. (PDF 1012 kb)

Supplementary Fig. 4

Assessment of the off-target effects of shRNAs used for analyses in Figure 5. (PDF 1056 kb)

Supplementary Fig. 5

The specificity of RECK activity on ADAMs. (PDF 722 kb)

Supplementary Fig. 6

Effects of membrane-unanchored RECK on ADAM10-dependent Delta shedding. (PDF 513 kb)

Supplementary Fig. 7

Effects of RECK on Notch shedding. (PDF 498 kb)

Supplementary Fig. 8

Cell autonomous effects of RECK on the intercellular Notch signaling. (PDF 524 kb)

Supplementary Table 1

Sequence of primers used in RT-PCR. (PDF 30 kb)

Supplementary Table 2

DNA sequences used as the shRNA template. (PDF 33 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muraguchi, T., Takegami, Y., Ohtsuka, T. et al. RECK modulates Notch signaling during cortical neurogenesis by regulating ADAM10 activity. Nat Neurosci 10, 838–845 (2007). https://doi.org/10.1038/nn1922

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1922

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing