Figure S4 In slices from PC-γ2-swap mice, potentiation of GABA_A receptor-mediated mIPSCs by zolpidem is restricted to Purkinje cells. (a) Representative average mIPSCs recorded at −70mV from a Purkinje cell of a P146 PC-γ2-swap mouse in control conditions and in the presence of zolpidem (1 μM; red, superimposed). (Note, different cell/animal to equivalent recordings shown in Fig. 4b of manuscript.) The corresponding traces on the right are shown after peak scaling. Smooth red or black lines on the decaying phase of the scaled traces (grey) are fits of double-exponential functions. Zolpidem increased the amplitude and decay of the mIPSCs. Inset shows a cumulative histogram for the amplitudes of individual mIPSCs in this cell, before, and after, zolpidem.

Legend continues on following page.
From synapse to behavior: rapid modulation of defined neuronal populations through engineered GABA\(_A\) receptors

\(p = 1.981\text{e-7}, \text{Kolmogorov-Smirnov test; } n = 345, \text{ and } 245 \text{ events in control and zolpidem, respectively). As seen in the scaled traces, the decay } \tau_w \text{ increased by } \sim 50\%. \text{ For pooled data, see Fig. 4c. (b) Representative averaged mIPSCs from a stellate cell in a different slice from the same PC-}\gamma2\text{-swap animal (details as in a). Zolpidem had no effect on the peak amplitude (inset; } p = 0.271, \text{ Kolmogorov-Smirnov test; } n = 356 \text{ and } 315) \text{ and produced only a small change in the decay of the average mIPSC. Overall, in five stellate cells, zolpidem had no significant effect on amplitude } (+5.2 \pm 4.3\% \text{; } 61.3 \pm 10.4 \text{ vs. } 63.7 \pm 10.0 \text{ pA, } p > 0.05) \text{ decay } (\tau_w; \ +3.0 \pm 6.0\% \text{; } 2.6 \pm 0.1 \text{ vs. } 2.7 \pm 0.1 \text{ ms, } p > 0.05) \text{ or charge transfer } (+7.0 \pm 5.0\%; \ 194.4 \pm 33.3 \text{ vs. } 204.6 \pm 32.3 \text{ fC, } p > 0.05). \)