Supplementary data Figure 3: Average peak current amplitudes obtained from Cav1.2, Cav2.1 and Cav2.2 calcium channels under control conditions, and after 15 minute incubation with LPA with or without pretreatment by Fasudil. Because HVA channels typically undergo rundown in response to prolonged dialysis, it was not feasible to examine the effects of LPA on current activity in real time. Instead, we measured peak current size in cells transfected with a given HVA calcium channel isoform (plus ancillary α2-δ1 and β1b subunits) with or without treatment with LPA and LPA+Fasudil. In every case, data were obtained from at least two transfections and for each transfection, cells were subjected to all three conditions. LPA significantly reduced peak current amplitudes of Cav2.2 (N-type) and Cav2.1 (P/Q-type) calcium channels by about 50% (n = 12, p = 0.001; n = 26, p = 0.002, respectively) and this decrease was blocked by Fasudil. In contrast, peak current densities of Cav1.2 (L-type) calcium channels were not significantly altered (n = 20). Asterisks denote statistical significance relative to control (p<0.05). All HVA currents were obtained in 20 mM external barium.