Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo

Abstract

To define the role of the Raf serine/threonine kinases in nervous system development, we conditionally targeted B-Raf and C-Raf, two of the three known mammalian Raf homologs, using a mouse line expressing Cre recombinase driven by a nestin promoter. Targeting of B-Raf, but not C-Raf, markedly attenuated baseline phosphorylation of Erk in neural tissues and led to growth retardation. Conditional elimination of B-Raf in dorsal root ganglion (DRG) neurons did not interfere with survival, but instead caused marked eduction in expression of the glial cell line–derived neurotrophic factor receptor Ret at postnatal stages, associated with a profound reduction in levels of transcription factor CBF-β. Elimination of both alleles of Braf, which encodes B-Raf, and one allele of Raf1, which encodes C-Raf, affected DRG neuron maturation as well as proprioceptive axon projection toward the ventral horn in the spinal cord. Finally, conditional elimination of all Braf and Raf1 alleles strongly reduced neurotrophin-dependent axon growth in vitro as well as cutaneous axon terminal arborization in vivo. We conclude that Raf function is crucial for several aspects of DRG neuron development, including differentiation and axon growth.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Conditional ablation of Braf and Raf1.
Figure 2: Neural tissue-specific ablation of B-Raf.
Figure 3: Loss of B-Raf leads to reduced neural innervation in pituitary gland.
Figure 4: Loss of B-Raf affects postnatal Ret expression, but not survival of DRG neurons.
Figure 5: B-Raf is sufficient to activate the transcription factor complex PEBP2 and induce Ret expression in DRG neurons.
Figure 6: Biochemical and axon projection abnormalities in DRGs missing three Raf alleles (Braff/fRaf1f/+nesCre+) mice at early postnatal stages.
Figure 7: Reduced Erk phosphorylation and axonal growth in embryos after loss of four Raf alleles.
Figure 8: NGF-induced axon growth was reduced in B- and C-Raf deficient DRG neurons.

Similar content being viewed by others

References

  1. Wellbrock, C., Karasarides, M. & Marais, R. The RAF proteins take centre stage. Nat. Rev. Mol. Cell Biol. 5, 875–885 (2004).

    Article  CAS  Google Scholar 

  2. Markus, A., Patel, T.D. & Snider, W.D. Neurotrophic factors and axonal growth. Curr. Opin. Neurobiol. 12, 523–531 (2002).

    Article  CAS  Google Scholar 

  3. Klinz, F.J., Wolff, P. & Heumann, R. Nerve growth factor-stimulated mitogen-activated protein kinase activity is not necessary for neurite outgrowth of chick dorsal root ganglion sensory and sympathetic neurons. J. Neurosci. Res. 46, 720–726 (1996).

    Article  CAS  Google Scholar 

  4. Althini, S., Usoskin, D., Kylberg, A., Kaplan, P.L. & Ebendal, T. Blocked MAP kinase activity selectively enhances neurotrophic growth responses. Mol. Cell. Neurosci. 25, 345–354 (2004).

    Article  CAS  Google Scholar 

  5. Markus, A., Zhong, J. & Snider, W.D. Raf and Akt mediate distinct aspects of sensory axon growth. Neuron 35, 65–76 (2002).

    Article  CAS  Google Scholar 

  6. Marais, R., Light, Y., Paterson, H.F., Mason, C.S. & Marshall, C.J. Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic Ras and tyrosine kinases. J. Biol. Chem. 272, 4378–4383 (1997).

    Article  CAS  Google Scholar 

  7. Mercer, K. et al. ERK signalling and oncogene transformation are not impaired in cells lacking A-Raf. Oncogene 21, 347–355 (2002).

    Article  CAS  Google Scholar 

  8. Morice, C. et al. Raf-1 and B-Raf proteins have similar regional distributions but differential subcellular localization in adult rat brain. Eur. J. Neurosci. 11, 1995–2006 (1999).

    Article  CAS  Google Scholar 

  9. Wojnowski, L., Stancato, L.F., Larner, A.C., Rapp, U.R. & Zimmer, A. Overlapping and specific functions of Braf and Craf-1 proto-oncogenes during mouse embryogenesis. Mech. Dev. 91, 97–104 (2000).

    Article  CAS  Google Scholar 

  10. Wiese, S. et al. Specific function of B-Raf in mediating survival of embryonic motoneurons and sensory neurons. Nat. Neurosci. 4, 137–142 (2001).

    Article  CAS  Google Scholar 

  11. Mantamadiotis, T. et al. Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31, 47–54 (2002).

    Article  CAS  Google Scholar 

  12. Murakami, M.S. & Morrison, D.K. Raf-1 without MEK? Sci. STKE [online] 2001, pe30 (2001).

    CAS  PubMed  Google Scholar 

  13. Barnier, J.V., Papin, C., Eychène, A., Lecoq, O. & Calothy, G. The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J. Biol. Chem. 270, 23381–23389 (1995).

    Article  CAS  Google Scholar 

  14. Chen, A.P. et al. Forebrain-specific knockout of B-raf kinase leads to deficits in hippocampal long-term potentiation, learning, and memory. J. Neurosci. Res. 83, 28–38 (2006).

    Article  CAS  Google Scholar 

  15. Jesenberger, V. et al. Protective role of Raf-1 in salmonella-induced macrophage apoptosis. J. Exp. Med. 193, 353–364 (2001).

    Article  CAS  Google Scholar 

  16. Wojnowski, L. et al. Endothelial apoptosis in Braf-deficient mice. Nat. Genet. 16, 293–297 (1997).

    Article  CAS  Google Scholar 

  17. Fariñas, I., Wilkinson, G.A., Backus, C., Reichardt, L.F. & Patapoutian, A. Characterization of neurotrophin and Trk receptor functions in developing sensory ganglia: direct NT-3 activation of TrkB neurons in vivo. Neuron 21, 325–334 (1998).

    Article  Google Scholar 

  18. Kramer, I. et al. A role for Runx transcription factor signaling in dorsal root ganglion sensory neuron diversification. Neuron 49, 379–393 (2006).

    Article  CAS  Google Scholar 

  19. Wettschureck, N. et al. Loss of Gq/11 family G proteins in the nervous system causes pituitary somatotroph hypoplasia and dwarfism in mice. Mol. Cell. Biol. 25, 1942–1948 (2005).

    Article  CAS  Google Scholar 

  20. Lu, X., Melnick, M.B., Hsu, J.C. & Perrimon, N. Genetic and molecular analyses of mutations involved in Drosophila raf signal transduction. EMBO J. 13, 2592–2599 (1994).

    Article  CAS  Google Scholar 

  21. Bennett, D.L. et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J. Neurosci. 18, 3059–3072 (1998).

    Article  CAS  Google Scholar 

  22. Zhang, B.-H. & Guan, K.-L. Activation of B-Raf kinase requires phosphorylation of the conserved residues Thr598 and Ser601. EMBO J. 19, 5429–5439 (2000).

    Article  CAS  Google Scholar 

  23. Marek, L. et al. Multiple signaling conduits regulate global differentiation-specific gene expression in PC12 cells. J. Cell. Physiol. 201, 459–469 (2004).

    Article  CAS  Google Scholar 

  24. Chen, C.L. et al. Runx1 determines nociceptive sensory neuron phenotype and is required for thermal and neuropathic pain. Neuron 49, 365–377 (2006).

    Article  CAS  Google Scholar 

  25. Chen, A.I., de Nooij, J.C. & Jessell, T.M. Graded activity of transcription factor Runx3 specifies the laminar termination pattern of sensory axons in the developing spinal cord. Neuron 49, 395–408 (2006).

    Article  CAS  Google Scholar 

  26. Inoue, K. et al. Runx3 controls the axonal projection of proprioceptive dorsal root ganglion neurons. Nat. Neurosci. 5, 946–954 (2002).

    Article  CAS  Google Scholar 

  27. Patel, T.D. et al. Peripheral NT3 signaling is required for ETS protein expression and central patterning of proprioceptive sensory afferents. Neuron 38, 403–416 (2003).

    Article  CAS  Google Scholar 

  28. Molliver, D.C. et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early postnatal life. Neuron 19, 849–861 (1997).

    Article  CAS  Google Scholar 

  29. Patel, T.D., Jackman, A., Rice, F.L., Kucera, J. & Snider, W.D. Development of sensory neurons in the absence of NGF/TrkA signaling in vivo. Neuron 25, 345–357 (2000).

    Article  CAS  Google Scholar 

  30. Kuruvilla, R. et al. A neurotrophin signaling cascade coordinates sympathetic neuron development through differential control of TrkA trafficking and retrograde signaling. Cell 118, 243–255 (2004).

    Article  CAS  Google Scholar 

  31. Galabova-Kovacs, G. et al. Essential role of B-Raf in ERK activation during extraembryonic development. Proc. Natl. Acad. Sci. USA 103, 1325–1330 (2006).

    Article  CAS  Google Scholar 

  32. Rodriguez-Viciana, P. et al. Germline mutations in genes within the MAPK pathway cause cardio-facio-cutaneous syndrome. Science (2006).

  33. Niihori, T. et al. Germline KRAS and BRAF mutations in cardio-facio-cutaneous syndrome. Nat. Genet. 38, 294–296 (2006).

    Article  CAS  Google Scholar 

  34. Offermanns, S. et al. Impaired motor coordination and persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking Gαq. Proc. Natl. Acad. Sci. USA 94, 14089–14094 (1997).

    Article  CAS  Google Scholar 

  35. Wan, P.T. et al. Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116, 855–867 (2004).

    Article  CAS  Google Scholar 

  36. Garnett, M.J., Rana, S., Paterson, H., Barford, D. & Marais, R. Wild-type and mutant B-RAF activate C-RAF through distinct mechanisms involving heterodimerization. Mol. Cell 20, 963–969 (2005).

    Article  CAS  Google Scholar 

  37. Rushworth, L.K., Hindley, A.D., O'Neill, E. & Kolch, W. Regulation and role of Raf-1/B-Raf heterodimerization. Mol. Cell. Biol. 26, 2262–2272 (2006).

    Article  CAS  Google Scholar 

  38. Galabova-Kovacs, G. et al. ERK and beyond: insights from B-Raf and Raf-1 conditional knockouts. Cell Cycle 5, 1514–1518 (2006).

    Article  CAS  Google Scholar 

  39. Marmigere, F. et al. The Runx1/AML1 transcription factor selectively regulates development and survival of TrkA nociceptive sensory neurons. Nat. Neurosci. 9, 180–187 (2006).

    Article  CAS  Google Scholar 

  40. Ito, Y. Oncogenic potential of the RUNX gene family: 'overview'. Oncogene 23, 4198–4208 (2004).

    Article  CAS  Google Scholar 

  41. Pierchala, B.A., Tsui, C.C., Milbrandt, J. & Johnson, E.M. NGF augments the autophosphorylation of Ret via inhibition of ubiquitin-dependent degradation. J. Neurochem. 100, 1169–1176 (2007). [AU: Vol/pp supplied; correct?]

    Article  CAS  Google Scholar 

  42. Camarero, G. et al. Cortical migration defects in mice expressing A-RAF from the B-RAF locus. Mol. Cell. Biol. 26, 7103–7115 (2006).

    Article  CAS  Google Scholar 

  43. Melnick, M.B., Perkins, L.A., Lee, M., Ambrosio, L. & Perrimon, N. Developmental and molecular characterization of mutations in the Drosophila-raf serine/threonine protein kinase. Development 118, 127–138 (1993).

    CAS  PubMed  Google Scholar 

  44. Hagemann, C. & Rapp, U.R. Isotype-specific functions of Raf kinases. Exp. Cell Res. 253, 34–46 (1999).

    Article  CAS  Google Scholar 

  45. Tapinos, N. & Rambukkana, A. Insights into regulation of human Schwann cell proliferation by Erk1/2 via a MEK-independent and p56Lck-dependent pathway from leprosy bacilli. Proc. Natl. Acad. Sci. USA 102, 9188–9193 (2005).

    Article  CAS  Google Scholar 

  46. Giroux, S. et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr. Biol. 9, 369–376 (1999).

    Article  CAS  Google Scholar 

  47. Bélanger, L.-F. et al. Mek2 Is dispensable for mouse growth and development. Mol. Cell. Biol. 23, 4778–4787 (2003).

    Article  Google Scholar 

  48. Hatano, N. et al. Essential role for ERK2 mitogen-activated protein kinase in placental development. Genes Cells 8, 847–856 (2003).

    Article  CAS  Google Scholar 

  49. Nekrasova, T. et al. ERK1-deficient mice show normal T cell effector function and are highly susceptible to experimental autoimmune encephalomyelitis. J. Immunol. 175, 2374–2380 (2005).

    Article  CAS  Google Scholar 

  50. Yao, Y. et al. Extracellular signal-regulated kinase 2 is necessary for mesoderm differentiation. Proc. Natl. Acad. Sci. USA 100, 12759–12764 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank L. Lei, L. Parada (University of Texas Southwestern), L. Reichardt (University of California San Francisco), T. Jessell (Columbia University) and E. Turner (University of California San Diego) for sharing valuable antibodies, P. Barker (McGill University) for the PC12 cells and K.L. Guan (University of Michigan, Ann Arbor) for the BRAF-ED cDNA. We are grateful to P. Ye and A.J. D'Ercole for blood glucose assays and pituitary gland study. Special thanks are due to the Animal Model Core Facility at University of North Carolina at Chapel Hill for their expert assistance in generating the gene-targeted mice. This work was supported by RO1N0S31768 from the US National Institutes of Health and the Confocal and Multiphoton Microscopy Core Facility supported by National Institute of Neurological Disorders and Stroke center grant NS45892.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to William D Snider.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Schematic showing the Braf exon-3 gene targeting construct with chromosomal location of the loxP sites. (PDF 261 kb)

Supplementary Fig. 2

Loss of DRG neuron markers in E12.5 Braf−/− embryos. (PDF 522 kb)

Supplementary Fig. 3

Homeostasis abnormalities in Braff/−nesCre+ mice. (PDF 246 kb)

Supplementary Fig. 4

At P30, the brain size of Braff/−nesCre+ mice is reduced, compared with control littermates'. (PDF 2494 kb)

Supplementary Fig. 5

Profiling of transcription factor activities induced by NGF and B-Raf in PC12 cells. (PDF 4832 kb)

Supplementary Fig. 6

Phenotype in Braff/fRaf1f/+nesCre+ mice. (PDF 3549 kb)

Supplementary Fig. 7

Loss of B- and C-Raf at early embryonic stages impairs NGF-induced axon growth but not neuron survival. (PDF 491 kb)

Supplementary Table 1

List of selected transcription factor complexes activated by NGF or B-Raf 24 h after stimulation. (PDF 136 kb)

Supplementary Video 1

A Braff/−nesCre+ mouse and its Braff/− littermate at P30. The B-Raf conditional null mice are easy to recognize as they are much smaller than their control littermates. Note that mice appear to be hyperactive and clearly have full locomotor activity. This latter observation demonstrates that motor and sensory neurons have survived into adulthood. (MPG 4152 kb)

Supplementary Video 2

A Raf1f/−nesCre+ mouse and its control littermate at the age of P30. The C-Raf conditional nulls have no obvious behavioral phenotype. (MPG 665 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhong, J., Li, X., McNamee, C. et al. Raf kinase signaling functions in sensory neuron differentiation and axon growth in vivo. Nat Neurosci 10, 598–607 (2007). https://doi.org/10.1038/nn1898

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1898

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing