Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation

Abstract

Dendritic spines are small protrusions emerging from dendrites that receive excitatory input. The process of spine morphogenesis occurs both in the developing brain and during synaptic plasticity. Molecules regulating the cytoskeleton are involved in spine formation and maintenance. Here we show that reverse signaling by the transmembrane ligands for Eph receptors, ephrinBs, is required for correct spine morphogenesis. The molecular mechanism underlying this function of ephrinBs involves the SH2 and SH3 domain–containing adaptor protein Grb4 and the G protein–coupled receptor kinase–interacting protein (GIT) 1. Grb4 binds by its SH2 domain to Tyr392 in the synaptic localization domain of GIT1. Phosphorylation of Tyr392 and the recruitment of GIT1 to synapses are regulated by ephrinB activation. Disruption of this pathway in cultured rat hippocampal neurons impairs spine morphogenesis and synapse formation. We thus show an important role for ephrinB reverse signaling in spine formation and have mapped the downstream pathway involved in this process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: EphrinB signaling promotes spine morphogenesis.
Figure 2: Interference with ephrinB reverse signaling results in impaired spine formation.
Figure 3: Grb4 localizes to synapses.
Figure 4: GIT1 interacts with Grb4.
Figure 5: Grb4-GIT1 binding is regulated by ephrinB reverse signaling.
Figure 6: GIT1 is recruited to ephrinB patches at the synapse.
Figure 7: Disruption of ephrinB signaling through Grb4 and GIT1 affects spine morphogenesis.
Figure 8: Disruption of ephrinB signaling through Grb4 and GIT1 affects synapse formation.

Similar content being viewed by others

References

  1. Nimchinsky, E.A., Sabatini, B.L. & Svoboda, K. Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002).

    Article  CAS  Google Scholar 

  2. Dunaevsky, A., Tashiro, A., Majewska, A., Mason, C. & Yuste, R. Developmental regulation of spine motility in the mammalian central nervous system. Proc. Natl. Acad. Sci. USA 96, 13438–13443 (1999).

    Article  CAS  Google Scholar 

  3. Dunaevsky, A., Blazeski, R., Yuste, R. & Mason, C. Spine motility with synaptic contact. Nat. Neurosci. 4, 685–686 (2001).

    Article  CAS  Google Scholar 

  4. Trachtenberg, J.T. et al. Long-term in vivo imaging of experience-dependent synaptic plasticity in adult cortex. Nature 420, 788–794 (2002).

    Article  CAS  Google Scholar 

  5. Yuste, R. & Bonhoeffer, T. Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001).

    Article  CAS  Google Scholar 

  6. Dalva, M.B. et al. EphB receptors interact with NMDA receptors and regulate excitatory synapse formation. Cell 103, 945–956 (2000).

    Article  CAS  Google Scholar 

  7. Grunwald, I.C. et al. Kinase-independent requirement of EphB2 receptors in hippocampal synaptic plasticity. Neuron 32, 1027–1040 (2001).

    Article  CAS  Google Scholar 

  8. Henderson, J.T. et al. The receptor tyrosine kinase EphB2 regulates NMDA-dependent synaptic function. Neuron 32, 1041–1056 (2001).

    Article  CAS  Google Scholar 

  9. Henkemeyer, M., Itkis, O.S., Ngo, M., Hickmott, P.W. & Ethell, I.M. Multiple EphB receptor tyrosine kinases shape dendritic spines in the hippocampus. J. Cell Biol. 163, 1313–1326 (2003).

    Article  CAS  Google Scholar 

  10. Ethell, I.M. et al. EphB/syndecan-2 signaling in dendritic spine morphogenesis. Neuron 31, 1001–1013 (2001).

    Article  CAS  Google Scholar 

  11. Penzes, P. et al. Rapid induction of dendritic spine morphogenesis by trans-synaptic ephrinB-EphB receptor activation of the Rho-GEF kalirin. Neuron 37, 263–274 (2003).

    Article  CAS  Google Scholar 

  12. Irie, F. & Yamaguchi, Y. EphB receptors regulate dendritic spine development via intersectin, Cdc42 and N-WASP. Nat. Neurosci. 5, 1117–1118 (2002).

    Article  CAS  Google Scholar 

  13. Moeller, M.L., Shi, Y., Reichardt, L.F., Ethell, I.M. & Eph, B. Receptors regulate dendritic spine morphogenesis through the recruitment/phosphorylation of focal adhesion kinase and RhoA activation. J. Biol. Chem. 281, 1587–1598 (2006).

    Article  CAS  Google Scholar 

  14. Murai, K.K., Nguyen, L.N., Irie, F., Yamaguchi, Y. & Pasquale, E.B. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6, 153–160 (2003).

    Article  CAS  Google Scholar 

  15. Contractor, A. et al. Trans-synaptic Eph receptor-ephrin signaling in hippocampal mossy fiber LTP. Science 296, 1864–1869 (2002).

    Article  CAS  Google Scholar 

  16. Armstrong, J.N. et al. B-ephrin reverse signaling is required for NMDA-independent long-term potentiation of mossy fibers in the hippocampus. J. Neurosci. 26, 3474–3481 (2006).

    Article  CAS  Google Scholar 

  17. Grunwald, I.C. et al. Hippocampal plasticity requires postsynaptic ephrinBs. Nat. Neurosci. 7, 33–40 (2004).

    Article  CAS  Google Scholar 

  18. Zhang, H., Webb, D.J., Asmussen, H. & Horwitz, A.F. Synapse formation is regulated by the signaling adaptor GIT1. J. Cell Biol. 161, 131–142 (2003).

    Article  CAS  Google Scholar 

  19. Zhang, H., Webb, D.J., Asmussen, H., Niu, S. & Horwitz, A.F.A. GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 25, 3379–3388 (2005).

    Article  CAS  Google Scholar 

  20. Cowan, C.A. & Henkemeyer, M. The SH2/SH3 adaptor Grb4 transduces B-ephrin reverse signals. Nature 413, 174–179 (2001).

    Article  CAS  Google Scholar 

  21. Zimmer, M., Palmer, A., Kohler, J. & Klein, R. EphB-ephrinB bi-directional endocytosis terminates adhesion allowing contact mediated repulsion. Nat. Cell Biol. 5, 869–878 (2003).

    Article  CAS  Google Scholar 

  22. Stein, E. et al. Eph receptors discriminate specific ligand oligomers to determine alternative signaling complexes, attachment, and assembly responses. Genes Dev. 12, 667–678 (1998).

    Article  CAS  Google Scholar 

  23. Cho, K.O., Hunt, C.A. & Kennedy, M.B. The rat brain postsynaptic density fraction contains a homolog of the Drosophila discs-large tumor suppressor protein. Neuron 9, 929–942 (1992).

    Article  CAS  Google Scholar 

  24. Bauer, A. & Kuster, B. Affinity purification-mass spectrometry. Powerful tools for the characterization of protein complexes. Eur. J. Biochem. 270, 570–578 (2003).

    Article  CAS  Google Scholar 

  25. Zhao, Z.S., Manser, E., Loo, T.H. & Lim, L. Coupling of PAK-interacting exchange factor PIX to GIT1 promotes focal complex disassembly. Mol. Cell. Biol. 20, 6354–6363 (2000).

    Article  CAS  Google Scholar 

  26. Braverman, L.E. & Quilliam, L.A. Identification of Grb4/Nckβ, a Src homology 2 and 3 domain-containing adapter protein having similar binding and biological properties to Nck. J. Biol. Chem. 274, 5542–5549 (1999).

    Article  CAS  Google Scholar 

  27. Palmer, A. et al. EphrinB phosphorylation and reverse signaling: regulation by Src kinases and PTP-BL phosphatase. Mol. Cell 9, 725–737 (2002).

    Article  CAS  Google Scholar 

  28. Ethell, I.M. & Yamaguchi, Y. Cell surface heparan sulfate proteoglycan syndecan-2 induces the maturation of dendritic spines in rat hippocampal neurons. J. Cell Biol. 144, 575–586 (1999).

    Article  CAS  Google Scholar 

  29. Hoogenraad, C.C., Milstein, A.D., Ethell, I.M., Henkemeyer, M. & Sheng, M. GRIP1 controls dendrite morphogenesis by regulating EphB receptor trafficking. Nat. Neurosci. 8, 906–915 (2005).

    Article  CAS  Google Scholar 

  30. Songyang, Z. et al. SH2 domains recognize specific phosphopeptide sequences. Cell 72, 767–778 (1993).

    Article  CAS  Google Scholar 

  31. Stein, E., Huynh-Do, U., Lane, A.A., Cerretti, D.P. & Daniel, T.O. Nck recruitment to Eph receptor, EphB1/ELK, couples ligand activation to c-Jun kinase. J. Biol. Chem. 273, 1303–1308 (1998).

    Article  CAS  Google Scholar 

  32. Brown, M.C., Cary, L.A., Jamieson, J.S., Cooper, J.A. & Turner, C.E. Src and FAK kinases cooperate to phosphorylate paxillin kinase linker, stimulate its focal adhesion localization, and regulate cell spreading and protrusiveness. Mol. Biol. Cell 16, 4316–4328 (2005).

    Article  CAS  Google Scholar 

  33. Haendeler, J. et al. GIT1 mediates Src-dependent activation of phospholipase Cγ by angiotensin II and epidermal growth factor. J. Biol. Chem. 278, 49936–49944 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Cellzome AG, A. Senturk, S. Jordan, M. Zimmer, and E. Martinez for technical help; R.T. Premont (Duke University Medical Center) for GIT1- and GIT2-Flag constructs and antibodies to GIT1, GIT2 and β-PIX; K.S. Erdmann (Ruhr-University) for HeLa-ephrinB1 cells; R. Klein for helpful discussions and A. Yamasaki, I. Kadow and R. Klein for critically reading the manuscript. This work was supported by grants from the Deutsche Forschungsgemeinschaft (AC180/2-1 to A.A.-P.).

Author information

Authors and Affiliations

Authors

Contributions

I.S. and S.W. performed the molecular biology and biochemical experiments. C.L.E. conducted the spine assays and dominant negative experiments with the help of I.S. and S.W. A.A.-P. designed and supervised the experiments and wrote the manuscript.

Corresponding author

Correspondence to Amparo Acker-Palmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Spine maturation is independently driven by Eph receptor forward and ephrinB reverse signaling. (PDF 715 kb)

Supplementary Fig. 2

GIT proteins interact with Grb4 through the SLD. (PDF 1224 kb)

Supplementary Fig. 3

Grb4 interacts with GIT1 and ephrinB ligands though SH2 and SH3 domains. (PDF 2633 kb)

Supplementary Methods (PDF 117 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segura, I., Essmann, C., Weinges, S. et al. Grb4 and GIT1 transduce ephrinB reverse signals modulating spine morphogenesis and synapse formation. Nat Neurosci 10, 301–310 (2007). https://doi.org/10.1038/nn1858

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1858

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing