Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion

Abstract

The establishment of synaptic connections requires precise alignment of pre- and postsynaptic terminals. The glial cell line–derived neurotrophic factor (GDNF) receptor GFRα1 is enriched at pre- and postsynaptic compartments in hippocampal neurons, suggesting that it has a function in synapse formation. GDNF triggered trans-homophilic binding between GFRα1 molecules and cell adhesion between GFRα1-expressing cells. This represents the first example of a cell-cell interaction being mediated by a ligand-induced cell adhesion molecule (LICAM). In the presence of GDNF, ectopic GFRα1 induced localized presynaptic differentiation in hippocampal neurons, as visualized by clustering of vesicular proteins and neurotransmitter transporters, and by activity-dependent vesicle recycling. Presynaptic differentiation induced by GDNF was markedly reduced in neurons lacking GFRα1. Gdnf mutant mice showed reduced synaptic localization of presynaptic proteins and a marked decrease in the density of presynaptic puncta, indicating a role for GDNF signaling in hippocampal synaptogenesis in vivo. We propose that GFRα1 functions as a LICAM to establish precise synaptic contacts and induce presynaptic differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Developmental expression and synaptic localization of GDNF receptors in hippocampal neurons.
Figure 2: GDNF-dependent trans-homophilic interactions between GFRα1 molecules promote cell adhesion.
Figure 3: GDNF increases the colocalization of pre- and postsynaptic markers, but not the expression of presynaptic proteins, in hippocampal neurons.
Figure 4: Localized induction of presynaptic assembly by immobilized GFRα1 in the presence of GDNF.
Figure 5: Excitatory and inhibitory presynaptic differentiation, activity-dependent vesicle recycling, and requirement of GFRα1 and NCAM but not RET.
Figure 6: Requirement of GDNF signaling for hippocampal presynaptic assembly and maturation in vivo.

Similar content being viewed by others

References

  1. Scheiffele, P. Cell-cell signaling during synapse formation in the CNS. Annu. Rev. Neurosci. 26, 485–508 (2003).

    Article  CAS  Google Scholar 

  2. Yamagata, M., Sanes, J.R. & Weiner, J.A. Synaptic adhesion molecules. Curr. Opin. Cell Biol. 15, 621–632 (2003).

    Article  CAS  Google Scholar 

  3. Scheiffele, P., Fan, J., Choih, J., Fetter, R. & Serafini, T. Neuroligin expressed in non-neuronal cells triggers presynaptic development in contacting axons. Cell 101, 657–669 (2000).

    Article  CAS  Google Scholar 

  4. Dean, C. et al. Neurexin mediates the assembly of presynaptic terminals. Nat. Neurosci. 6, 708–716 (2003).

    Article  CAS  Google Scholar 

  5. Biederer, T. et al. SynCAM, a synaptic adhesion molecule that drives synapse assembly. Science 297, 1525–1531 (2002).

    Article  CAS  Google Scholar 

  6. Hall, A.C., Lucas, F.R. & Salinas, P.C. Axonal remodeling and synaptic differentiation in the cerebellum is regulated by WNT-7a signaling. Cell 100, 525–535 (2000).

    Article  CAS  Google Scholar 

  7. Umemori, H., Linhoff, M.W., Ornitz, D.M. & Sanes, J.R. FGF22 and its close relatives are presynaptic organizing molecules in the mammalian brain. Cell 118, 257–270 (2004).

    Article  CAS  Google Scholar 

  8. Christopherson, K.S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article  CAS  Google Scholar 

  9. Vicario-Abejon, C., Owens, D., McKay, R. & Segal, M. Role of neurotrophins in central synapse formation and stabilization. Nat. Rev. Neurosci. 3, 965–974 (2002).

    Article  CAS  Google Scholar 

  10. Cohen-Cory, S. The developing synapse: construction and modulation of synaptic structures and circuits. Science 298, 770–776 (2002).

    Article  CAS  Google Scholar 

  11. Alsina, B., Vu, T. & Cohen-Cory, S. Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat. Neurosci. 4, 1093–1101 (2001).

    Article  CAS  Google Scholar 

  12. Cohen-Cory, S. & Fraser, S.E. Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo. Nature 378, 192–196 (1995).

    Article  CAS  Google Scholar 

  13. McAllister, A.K., Katz, L.C. & Lo, D.C. Opposing roles for endogenous BDNF and NT-3 in regulating cortical dendritic growth. Neuron 18, 767–778 (1997).

    Article  CAS  Google Scholar 

  14. Yamada, M.K. et al. Brain-derived neurotrophic factor promotes the maturation of GABAergic mechanisms in cultured hippocampal neurons. J. Neurosci. 22, 7580–7585 (2002).

    Article  CAS  Google Scholar 

  15. Poo, M.M. Neurotrophins as synaptic modulators. Nat. Rev. Neurosci. 2, 24–32 (2001).

    Article  CAS  Google Scholar 

  16. Airaksinen, M.S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  Google Scholar 

  17. Trupp, M. et al. Functional receptor for glial cell line–derived neurotrophic factor encoded by the c-ret proto-oncogene product. Nature 381, 785–789 (1996).

    Article  CAS  Google Scholar 

  18. Durbec, P. et al. Glial cell line–derived neurotrophic factor signalling through the Ret receptor tyrosine kinase. Nature 381, 789–792 (1996).

    Article  CAS  Google Scholar 

  19. Paratcha, G., Ledda, F. & Ibáñez, C.F. The neural cell adhesion molecule NCAM is an alternative signaling receptor for GDNF family ligands. Cell 113, 867–879 (2003).

    Article  CAS  Google Scholar 

  20. Sariola, H. & Saarma, M. Novel functions and signalling pathways for GDNF. J. Cell Sci. 116, 3855–3862 (2003).

    Article  CAS  Google Scholar 

  21. Ledda, F., Paratcha, G. & Ibáñez, C.F. Target-derived GFRα1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5. Neuron 36, 387–401 (2002).

    Article  CAS  Google Scholar 

  22. Paratcha, G. et al. Released GFRα1 potentiates downstream signaling, neuronal survival, and differentiation via a novel mechanism of recruitment of c-Ret to lipid rafts. Neuron 29, 171–184 (2001).

    Article  CAS  Google Scholar 

  23. Bourque, M.J. & Trudeau, L.E. GDNF enhances the synaptic efficacy of dopaminergic neurons in culture. Eur. J. Neurosci. 12, 3172–3180 (2000).

    Article  CAS  Google Scholar 

  24. Wang, C.Y. et al. Regulation of neuromuscular synapse development by glial cell line–derived neurotrophic factor and neurturin. J. Biol. Chem. 277, 10614–10625 (2002).

    Article  CAS  Google Scholar 

  25. Scott, R.P. & Ibáñez, C.F. Determinants of ligand binding specificity in the glial cell line–derived neurotrophic factor family receptor alphas. J. Biol. Chem. 276, 1450–1458 (2001).

    Article  CAS  Google Scholar 

  26. Eigenbrot, C. & Gerber, N. X-ray structure of glial cell–derived neurotrophic factor at 1.9 angstrom resolution and implications for receptor binding. Nat. Struct. Biol. 4, 435–438 (1997).

    Article  CAS  Google Scholar 

  27. Jing, S. et al. GDNF-induced activation of the ret protein tyrosine kinase is mediated by GDNFR-α, a novel receptor for GDNF. Cell 85, 1113–1124 (1996).

    Article  CAS  Google Scholar 

  28. Wiesmann, C., Ultsch, M.H., Bass, S.H. & de Vos, A.M. Crystal structure of nerve growth factor in complex with the ligand-binding domain of the TrkA receptor. Nature 401, 184–188 (1999).

    Article  CAS  Google Scholar 

  29. Leppanen, V.M. et al. The structure of GFRα1 domain 3 reveals new insights into GDNF binding and RET activation. EMBO J. 23, 1452–1462 (2004).

    Article  Google Scholar 

  30. Trupp, M., Raynoschek, C., Belluardo, N. & Ibáñez, C.F. Multiple GPI-anchored receptors control GDNF-dependent and independent activation of the c-Ret receptor tyrosine kinase. Mol. Cell. Neurosci. 11, 47–63 (1998).

    Article  CAS  Google Scholar 

  31. Trupp, M., Belluardo, N., Funakoshi, H. & Ibáñez, C.F. Complementary and overlapping expression of glial cell line–derived neurotrophic factor (GDNF), c-ret proto-oncogene, and gdnf receptor-α indicates multiple mechanisms of trophic actions in the adult rat CNS. J. Neurosci. 17, 3554–3567 (1997).

    Article  CAS  Google Scholar 

  32. Pozas, E. & Ibáñez, C.F. GDNF and GFRα1 promote differentiation and tangential migration of cortical GABAergic neurons. Neuron 45, 701–713 (2005).

    Article  CAS  Google Scholar 

  33. Ziv, N.E. & Garner, C.C. Cellular and molecular mechanisms of presynaptic assembly. Nat. Rev. Neurosci. 5, 385–399 (2004).

    Article  CAS  Google Scholar 

  34. Pina Serra, M., Quartu, M., Ambu, R., Follesa, P. & Del Fiacco, M. Immunohistochemical localization of GDNF in the human hippocampal formation from prenatal life to adulthood. Brain Res. 928, 138–146 (2002).

    Article  CAS  Google Scholar 

  35. Miyazaki, H., Nagashima, K., Okuma, Y. & Nomura, Y. Expression of glial cell line–derived neurotrophic factor induced by transient forebrain ischemia in rats. Brain Res. 922, 165–172 (2001).

    Article  CAS  Google Scholar 

  36. Gerlai, R. et al. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation. Eur. J. Neurosci. 14, 1153–1163 (2001).

    Article  CAS  Google Scholar 

  37. Voikar, V., Rossi, J., Rauvala, H. & Airaksinen, M.S. Impaired behavioural flexibility and memory in mice lacking GDNF family receptor α2. Eur. J. Neurosci. 20, 308–312 (2004).

    Article  Google Scholar 

  38. Cremer, H. et al. Long-term but not short-term plasticity at mossy fiber synapses is impaired in neural cell adhesion molecule–deficient mice. Proc. Natl. Acad. Sci. USA 95, 13242–13247 (1998).

    Article  CAS  Google Scholar 

  39. Dityatev, A., Dityateva, G. & Schachner, M. Synaptic strength as a function of post- versus presynaptic expression of the neural cell adhesion molecule NCAM. Neuron 26, 207–217 (2000).

    Article  CAS  Google Scholar 

  40. Polo-Parada, L., Bose, C.M. & Landmesser, L.T. Alterations in transmission, vesicle dynamics, and transmitter release machinery at NCAM-deficient neuromuscular junctions. Neuron 32, 815–828 (2001).

    Article  CAS  Google Scholar 

  41. Sytnyk, V., Leshchyns'ka, I., Nikonenko, A.G. & Schachner, M. NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex. J. Cell Biol. 174, 1071–1085 (2006).

    Article  CAS  Google Scholar 

  42. Ginsberg, M.H., Partridge, A. & Shattil, S.J. Integrin regulation. Curr. Opin. Cell Biol. 17, 509–516 (2005).

    Article  CAS  Google Scholar 

  43. Cammarota, M. et al. Cyclic AMP-responsive element binding protein in brain mitochondria. J. Neurochem. 72, 2272–2277 (1999).

    Article  CAS  Google Scholar 

  44. Matteoli, M., Takei, K., Perin, M.S., Sudhof, T.C. & De Camilli, P. Exo-endocytotic recycling of synaptic vesicles in developing processes of cultured hippocampal neurons. J. Cell Biol. 117, 849–861 (1992).

    Article  CAS  Google Scholar 

  45. Maximov, A. & Bezprozvanny, I. Synaptic targeting of N-type calcium channels in hippocampal neurons. J. Neurosci. 22, 6939–6952 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Sjöstrand for western blot of NCAM and GFRα1 in COS cells, A. Moliner for help with Jurkat cell cultures, R. Scott for deletion constructs of GFRα1, T. Harkany, E. Restrepo, B. Stevens and B. Barres for experimental advice and W. Friedman, M. Fainzilber, A. Canty and L. Reichardt for comments and suggestions. This work was funded by grants from the Swedish Foundation for Strategic Research, the Swedish Research Council (33X-10908-10A) and the European Commission (QLG3-CT-2002-01000). F.L. was partially supported by the David och Astrid Hageléns Foundation, the Swedish Research Council (33P-15416-01A) and the Foundation for Geriatric Disease and Karolinska Institute, and G.P. by the Swedish Research Council (33PS-14809-01A). T.S.-G. was partially supported by the European Union NeuroNE network (LSHM-CT-2004-512039).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fernanda Ledda or Carlos F Ibáñez.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Expression of GDNF receptors in hippocampus. (PDF 114 kb)

Supplementary Fig. 2

Comparison between the adhesive activities of GFRα1 and NCAM. (PDF 611 kb)

Supplementary Fig. 3

Lack of heterophilic interactions in trans between GFRα1 and NCAM. (PDF 685 kb)

Supplementary Fig. 4

Trans-homophilic interactions between GFRα1 molecules require an intact GDNF binding domain. (PDF 615 kb)

Supplementary Fig. 5

GDNF regulates the aggregation, but not the expression, of vesicle-associated pre-synaptic proteins in hippocampal neurons. (PDF 701 kb)

Supplementary Fig. 6

Localized induction of presynaptic differentiation by immobilized GFRα proteins in the presence of GDNF ligands. (PDF 697 kb)

Supplementary Fig. 7

GDNF binding to NCAM in hippocampal synaptosomes and Gdnf mRNA expression in P15 Gdnf+/− hippocampus. (PDF 84 kb)

Supplementary Fig. 8

Synaptophysin content in synapses of P15 and 6-week-old Gdnf+/− mice. (PDF 583 kb)

Supplementary Fig. 9

Schematic of synapse formation by ligand-induced cell adhesion. (PDF 524 kb)

Supplementary Fig. 10

Controls for Jurkat cell adhesion experiments. (PDF 610 kb)

Supplementary Methods (PDF 127 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ledda, F., Paratcha, G., Sandoval-Guzmán, T. et al. GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion. Nat Neurosci 10, 293–300 (2007). https://doi.org/10.1038/nn1855

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1855

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing