Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys

Abstract

The hippocampus is important for the acquisition of spatial representations of the environment and consequently in contextual memory. This suggests that the neural substrates underlying spatial cognition might be essential for remembering specific life episodes. Indeed, hippocampal lesions prevent spatial relational learning in adult rodents and monkeys, and result in profound amnesia in adult humans. In contrast, we show here that monkeys with neonatal hippocampal lesions learned new spatial relational information. Our experiments suggest that early hippocampal damage leads to functional brain reorganization that enables spatial information to be acquired through the use of brain regions that normally do not subserve this function.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic representation of the testing environment and experimental conditions.
Figure 2: Indices of the overall activity level for sham-operated control and hippocampus-lesioned monkeys.
Figure 3: Monkeys' first four choices during standard trials in the local cue condition.
Figure 4: Monkeys' first four choices during standard trials in the spatial relational condition.
Figure 5: Monkeys' choices (all cups that were opened) in the dissociation probe trial (no food present).
Figure 6: Magnetic resonance images showing the medial temporal lobe region in three different section planes (coronal, horizontal and sagittal).
Figure 7: Differential effect of early versus late hippocampal lesions.

Similar content being viewed by others

References

  1. Eichenbaum, H. The hippocampus, memory, and place cells: is it spatial memory or a memory space? Neuron 23, 209–226 (1999).

    Article  CAS  Google Scholar 

  2. Morris, R.G., Garrud, P., Rawlins, J.N.P. & Okeefe, J. Place navigation is impaired in rats with hippocampal-lesions. Nature 297, 681–683 (1982).

    Article  CAS  Google Scholar 

  3. Nadel, L. The hippocampus and space revisited. Hippocampus 1, 221–229 (1991).

    Article  CAS  Google Scholar 

  4. O'Keefe, J. & Dostrovsky, J. The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Res. 34, 171–175 (1971).

    Article  CAS  Google Scholar 

  5. O'Keefe, J. & Nadel, L. The Hippocampus as a Cognitive Map (Clarendon Press, Oxford, 1978).

    Google Scholar 

  6. Schenk, F., Grobéty, M.-C., Lavenex, P. & Lipp, H.-P. Dissociation between basic components of spatial memory in rats. in Behavioural Brain Research in Naturalistic and Semi-Naturalistic Settings NATO ASI series, Series D, Behavioural and Social Sciences (eds. Alleva, E., Fasolo, A., Lipp, H.-P., Nadel, L. & Ricceri, L.) 277–300 (Kluwer, Dordrecht, The Netherlands, 1995).

    Chapter  Google Scholar 

  7. Banta Lavenex, P., Amaral, D.G. & Lavenex, P. Hippocampal lesion prevents spatial relational learning in adult macaque monkeys. J. Neurosci. 26, 4546–4558 (2006).

    Article  Google Scholar 

  8. Astur, R.S., Taylor, L.B., Mamelak, A.N., Philpott, L. & Sutherland, R.J. Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132, 77–84 (2002).

    Article  Google Scholar 

  9. Bohbot, V.D., Iaria, G. & Petrides, M. Hippocampal function and spatial memory: evidence from functional neuroimaging in healthy participants and performance of patients with medial temporal lobe resections. Neuropsychology 18, 418–425 (2004).

    Article  Google Scholar 

  10. Parslow, D.M. et al. Allocentric spatial memory activation of the hippocampal formation measured with fMRI. Neuropsychology 18, 450–461 (2004).

    Article  Google Scholar 

  11. Shelton, A.L. & Gabrieli, J.D.E. Neural correlates of individual differences in spatial learning strategies. Neuropsychology 18, 442–449 (2004).

    Article  Google Scholar 

  12. Nadel, L. & Hardt, O. The spatial brain. Neuropsychology 18, 473–476 (2004).

    Article  Google Scholar 

  13. Lavenex, P. & Banta Lavenex, P. Spatial relational memory in 9-month-old macaque monkeys. Learn. Mem. 13, 84–96 (2006).

    Article  Google Scholar 

  14. Coutureau, E., Galani, R., Jarrard, L.E. & Cassel, J.C. Selective lesions of the entorhinal cortex, the hippocampus, or the fimbria-fornix in rats: a comparison of effects on spontaneous and amphetamine-induced locomotion. Exp. Brain Res. 131, 381–392 (2000).

    Article  CAS  Google Scholar 

  15. Whishaw, I.Q. & Jarrard, L.E. Similarities vs. differences in place learning and circadian activity in rats after fimbria-fornix section or ibotenate removal of hippocampal cells. Hippocampus 5, 595–604 (1995).

    Article  CAS  Google Scholar 

  16. Rempel-Clower, N.L., Zola, S.M., Squire, L.R. & Amaral, D.G. Three cases of enduring memory impairment after bilateral damage limited to the hippocampal formation. J. Neurosci. 16, 5233–5255 (1996).

    Article  CAS  Google Scholar 

  17. Zola-Morgan, S., Squire, L.R. & Amaral, D.G. Human amnesia and the medial temporal region enduring memory impairment following a bilateral lesion limited to field CA1 of the hippocampus. J. Neurosci. 6, 2950–2967 (1986).

    Article  CAS  Google Scholar 

  18. Baddeley, A., Vargha-Khadem, F. & Mishkin, M. Preserved recognition in a case of developmental amnesia: implications for the acquisition of semantic memory? J. Cogn. Neurosci. 13, 357–369 (2001).

    Article  CAS  Google Scholar 

  19. Gadian, D.G. et al. Developmental amnesia associated with early hypoxic-ischaemic injury. Brain 123, 499–507 (2000).

    Article  Google Scholar 

  20. Vargha-Khadem, F. et al. Differential effects of early hippocampal pathology on episodic and semantic memory. Science 277, 376–380 (1997).

    Article  CAS  Google Scholar 

  21. Burgess, N., Maguire, E.A. & O'Keefe, J. The human hippocampus and spatial and episodic memory. Neuron 35, 625–641 (2002).

    Article  CAS  Google Scholar 

  22. Moscovitch, M. et al. Functional neuroanatomy of remote episodic, semantic and spatial memory: a unified account based on multiple trace theory. J. Anat. 207, 35–66 (2005).

    Article  Google Scholar 

  23. Rosenbaum, R.S. et al. Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nat. Neurosci. 3, 1044–1048 (2000).

    Article  CAS  Google Scholar 

  24. Teng, E. & Squire, L.R. Memory for places learned long ago is intact after hippocampal damage. Nature 400, 675–677 (1999).

    Article  CAS  Google Scholar 

  25. Winocur, G., Moscovitch, M., Caruana, D.A. & Binns, M.A. Retrograde amnesia in rats with lesions to the hippocampus on a test of spatial memory. Neuropsychologia 43, 1580–1590 (2005).

    Article  Google Scholar 

  26. Milner, B., Squire, L.R. & Kandel, E.R. Cognitive neuroscience and the study of memory. Neuron 20, 445–468 (1998).

    Article  CAS  Google Scholar 

  27. Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A. & Rosenbaum, R.S. The cognitive neuroscience of remote episodic, semantic and spatial memory. Curr. Opin. Neurobiol. 16, 179–190 (2006).

    Article  CAS  Google Scholar 

  28. Duzel, E., Vargha-Khadem, F., Heinze, H.J. & Mishkin, M. Brain activity evidence for recognition without recollection after early hippocampal damage. Proc. Natl. Acad. Sci. USA 98, 8101–8106 (2001).

    Article  CAS  Google Scholar 

  29. King, J.A., Burgess, N., Hartley, T., Vargha-Khadem, F. & O'Keefe, J. Human hippocampus and viewpoint dependence in spatial memory. Hippocampus 12, 811–820 (2002).

    Article  Google Scholar 

  30. King, J.A., Trinkler, I., Hartley, T., Vargha-Khadem, F. & Burgess, N. The hippocampal role in spatial memory and the familiarity-recollection distinction: A case study. Neuropsychology 18, 405–417 (2004).

    Article  Google Scholar 

  31. Spiers, H.J., Burgess, N., Hartley, T., Vargha-Khadem, F. & O'Keefe, J. Bilateral hippocampal pathology impairs topographical and episodic memory but not visual pattern matching. Hippocampus 11, 715–725 (2001).

    Article  CAS  Google Scholar 

  32. Eichenbaum, H. The hippocampus, memory, and place cells: is it spatial memory of a memory space? Neuron 23, 209–226 (1999).

    Article  CAS  Google Scholar 

  33. Squire, L.R., Stark, C.E. & Clark, R.E. The medial temporal lobe. Annu. Rev. Neurosci. 27, 279–306 (2004).

    Article  CAS  Google Scholar 

  34. Tulving, E. & Markowitsch, H.J. Episodic and declarative memory: Role of the hippocampus. Hippocampus 8, 198–204 (1998).

    Article  CAS  Google Scholar 

  35. Deller, T. & Frotscher, M. Lesion-induced plasticity of central neurons—sprouting of single fibres in the rat hippocampus after unilateral entorhinal cortex lesion. Prog. Neurobiol. 53, 687–727 (1997).

    Article  CAS  Google Scholar 

  36. Goldman, P.S. Neuronal plasticity in primate telencephalon anomalous projections induced by prenatal removal of frontal cortex. Science 202, 768–770 (1978).

    Article  CAS  Google Scholar 

  37. Steward, O. Lesion-induced synapse reorganization in the hippocampus of cats: sprouting of entorhinal, commisural/associational, and mossy fiber projections after unilateral entorhinal cortex lesions, with comments on the normal organization of these pathways. Hippocampus 2, 247–268 (1992).

    Article  CAS  Google Scholar 

  38. Goldman, P.S. & Galkin, T.W. Prenatal removal of frontal association cortex in the fetal rhesus monkey anatomical and functional consequences in postnatal life. Brain Res. 152, 451–486 (1978).

    Article  CAS  Google Scholar 

  39. Neville, H.J. The development and neural bases of higher cognitive functions. Ann. NY Acad. Sci. 608, 71–87 (1990).

    Article  CAS  Google Scholar 

  40. Villablanca, J.R. & Hovda, D.A. Developmental neuroplasticity in a model of cerebral hemispherectomy and stroke. Neuroscience 95, 625–637 (2000).

    Article  CAS  Google Scholar 

  41. Bauman, M.D., Lavenex, P., Mason, W.A., Capitanio, J.P. & Amaral, D.G. The development of mother-infant interactions after neonatal amygdala lesions in rhesus monkeys. J. Neurosci. 24, 711–721 (2004).

    Article  CAS  Google Scholar 

  42. Rosset, A., Spadola, L. & Ratib, O. OsiriX: an open-source software for navigating in multidimensional DICOM images. J. Digit. Imaging 17, 205–216 (2004).

    Article  Google Scholar 

  43. Amaral, D.G. & Lavenex, P. Hippocampal neuroanatomy. in The Hippocampus Book (eds. Andersen, P., Morris, R.G.M., Amaral, D.G., Bliss, T. & O'Keefe, J.) 37–114 (Oxford University Press, Oxford, UK, 2006).

    Google Scholar 

  44. Lavenex, P. & Amaral, D.G. Hippocampal-neocortical interaction: a hierarchy of associativity. Hippocampus 10, 420–430 (2000).

    Article  CAS  Google Scholar 

  45. Schumann, C.M. et al. The amygdala is enlarged in children, but not adolescents, with autism; the hippocampus is enlarged at all ages. J. Neurosci. 24, 6392–6401 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Bennett and P. Tennant for assistance with surgeries and J. Toscano and J. Burky for assistance with behavioral testing. This research was conducted at the California National Primate Research Center (NIH, base grant RR00169) and was supported by grants from the US National Institute of Health (RO1-NS16980, RO1-MH57502), a Faculty and Alumni Research Development Fund grant from the Department of Psychiatry and Behavioral Sciences at the University of California at Davis and a grant from the Swiss National Science Foundation (PP00A-106701).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Lavenex.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figure 1

Magnetic resonance images showing the medial temporal lobe region of experimental monkeys in three different planes of section (coronal, horizontal and sagittal). (PDF 111 kb)

Supplementary Figure 2

Cdk5 Magnetic resonance images showing the medial temporal lobe region of experimental monkeys in three different planes of section (coronal, horizontal and sagittal). (PDF 111 kb)

Supplementary Table 1

First four choices in the spatial relational condition, individual behaviors. (PDF 513 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lavenex, P., Lavenex, P. & Amaral, D. Spatial relational learning persists following neonatal hippocampal lesions in macaque monkeys. Nat Neurosci 10, 234–239 (2007). https://doi.org/10.1038/nn1820

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1820

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing