Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Optimal sensorimotor transformations for balance

Abstract

Here we have identified a sensorimotor transformation that is used by a mammalian nervous system to produce a multijoint motor behavior. Using a simple biomechanical model, a delayed-feedback rule based on an optimal tradeoff between postural error and neural effort explained patterns of muscle activation in response to a sudden loss of balance in cats. Following the loss of large sensory afferents, changes in these muscle-activation patterns reflected an optimal reweighting of sensory feedback gains to minimize postural instability. Specifically, a loss of center-of-mass-acceleration information, which allowed for a rapid initial rise in the muscle activity in intact animals, was absent after large-fiber sensory neuropathy. Our results demonstrate that a simple and flexible neural feedback control strategy coordinates multiple muscles over time via a small set of extrinsic, task-level variables during complex multijoint natural movements.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Example of muscle-activation patterns evoked during balance corrections to support-surface motion in the horizontal plane.
Figure 2: Simple feedback model of postural control used to predict muscle activity during balance responses.
Figure 3: Comparison of recorded and simulated muscle activation and CoM kinematics.
Figure 4: Summary of model (TSyID) fits and parameter values (mean ± s.d.) for all muscles in four cats.
Figure 5: Robustness of the feedback model to varying perturbation characteristics.
Figure 6: Comparison of recorded and simulated muscle activation and CoM kinematics following large-fiber neuropathy.

Similar content being viewed by others

References

  1. Tresch, M.C., Saltiel, P. & Bizzi, E. The construction of movement by the spinal cord. Nat. Neurosci. 2, 162–167 (1999).

    Article  CAS  Google Scholar 

  2. Ting, L.H. & Macpherson, J.M. A limited set of muscle synergies for force control during a postural task. J. Neurophysiol. 93, 609–613 (2005).

    Article  Google Scholar 

  3. d'Avella, A. & Bizzi, E. Shared and specific muscle synergies in natural motor behaviors. Proc. Natl. Acad. Sci. USA 102, 3076–3081 (2005).

    Article  CAS  Google Scholar 

  4. Flash, T. & Hochner, B. Motor primitives in vertebrates and invertebrates. Curr. Opin. Neurobiol. 15, 660–666 (2005).

    Article  CAS  Google Scholar 

  5. Ting, L.H. Dimensional reduction in sensorimotor systems: a framework for understanding muscle coordination of posture. in Computational Neuroscience: Theoretical Insights into Brain Function, Progress in Brain Research 165 (eds. Cisek, P., Drew, T. & Kalaska, J.F.) 301–325 (Elsevier, Amsterdam, 2007).

    Google Scholar 

  6. Cappellini, G., Ivanenko, Y.P., Poppele, R.E. & Lacquaniti, F. Motor patterns in human walking and running. J. Neurophysiol. 95, 3426–3437 (2006).

    Article  CAS  Google Scholar 

  7. d'Avella, A., Saltiel, P. & Bizzi, E. Combinations of muscle synergies in the construction of a natural motor behavior. Nat. Neurosci. 6, 300–308 (2003).

    Article  CAS  Google Scholar 

  8. Poppele, R. & Bosco, G. Sophisticated spinal contributions to motor control. Trends Neurosci. 26, 269–276 (2003).

    Article  CAS  Google Scholar 

  9. Ting, L.H. & Macpherson, J.M. Ratio of shear to load ground-reaction force may underlie the directional tuning of the automatic postural response to rotation and translation. J. Neurophysiol. 92, 808–823 (2004).

    Article  Google Scholar 

  10. Horak, F.B. & Macpherson, J.M. Postural orientation and equilibrium. in Handbook of Physiology, Section 12, 255–92 (American Physiological Society, New York, 1996).

    Google Scholar 

  11. Gollhofer, A., Horstmann, G.A., Berger, W. & Dietz, V. Compensation of translational and rotational perturbations in human posture: stabilization of the centre of gravity. Neurosci. Lett. 105, 73–78 (1989).

    Article  CAS  Google Scholar 

  12. Todorov, E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nat. Neurosci. 3, 391–398 (2000).

    Article  CAS  Google Scholar 

  13. Graziano, M. The organization of behavioral repertoire in motor cortex. Annu. Rev. Neurosci. 29, 105–134 (2006).

    Article  CAS  Google Scholar 

  14. Scott, S.H. Optimal feedback control and the neural basis of volitional motor control. Nat. Rev. Neurosci. 5, 532–546 (2004).

    Article  CAS  Google Scholar 

  15. Todorov, E., Li, W. & Pan, X. From task parameters to motor synergies: a hierarchical framework for approximately optimal control of redundant manipulators. J. Robot Syst. 22, 691–710 (2005).

    Article  Google Scholar 

  16. Loeb, G.E., Brown, I.E. & Cheng, E.J. A hierarchical foundation for models of sensorimotor control. Exp. Brain Res. 126, 1–18 (1999).

    Article  CAS  Google Scholar 

  17. Stapley, P.J., Ting, L.H., Hulliger, M. & Macpherson, J.M. Automatic postural responses are delayed by pyridoxine-induced somatosensory loss. J. Neurosci. 22, 5803–5807 (2002).

    Article  CAS  Google Scholar 

  18. Macpherson, J.M. Strategies that simplify the control of quadrupedal stance. II. Electromyographic activity. J. Neurophysiol. 60, 218–231 (1988).

    Article  CAS  Google Scholar 

  19. Diener, H.C., Horak, F.B. & Nashner, L.M. Influence of stimulus parameters on human postural responses. J. Neurophysiol. 59, 1888–1905 (1988).

    Article  CAS  Google Scholar 

  20. Bosco, G., Poppele, R.E. & Eian, J. Reference frames for spinal proprioception: limb endpoint based or joint-level based? J. Neurophysiol. 83, 2931–2945 (2000).

    Article  CAS  Google Scholar 

  21. Nashner, L.M. Adapting reflexes controlling the human posture. Exp. Brain Res. 26, 59–72 (1976).

    Article  CAS  Google Scholar 

  22. Risher, D.W., Schutte, L.M. & Runge, C.F. The use of inverse dynamics solutions in direct dynamics simulations. J. Biomech. Eng. 119, 417–422 (1997).

    Article  CAS  Google Scholar 

  23. Torres-Oviedo, G., Macpherson, J.M. & Ting, L.H. Muscle synergy organization is robust across a variety of postural perturbations. J. Neurophysiol. 96, 1530–1546 (2006).

    Article  Google Scholar 

  24. Torres-Oviedo, G. & Ting, L.H. Muscle synergies characterizing human postural responses. J. Neurophysiol. published online 25 July 2007 (doi:10.1152/jn.01360.2006).

    Article  Google Scholar 

  25. Alexandrov, A.V., Frolov, A.A. & Massion, J. Biomechanical analysis of movement strategies in human forward trunk bending. I. Modeling. Biol. Cybern. 84, 425–434 (2001).

    Article  CAS  Google Scholar 

  26. van Antwerp, K.W., Burkholder, T.J. & Ting, L.H. Interjoint coupling effects on muscle contributions to endpoint force and acceleration in a musculoskeletal model of the cat hindlimb. J. Biomech. published online 17 July 2007(doi:10.1016/j.jbiomech.2007.06.001).

    Article  Google Scholar 

  27. He, J.P., Levine, W.S. & Loeb, G.E. Feedback gains for correcting small perturbations to standing posture. Proceedings of the 28th IEEE Conference on Decision and Control, 1989. 1, 518–526 (1991).

    Google Scholar 

  28. Jo, S. & Massaquoi, S.G. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Biol. Cybern. 91, 188–202 (2004).

    Article  Google Scholar 

  29. Kuo, A.D. An optimal state estimation model of sensory integration in human postural balance. J. Neural Eng. 2, S235–S249 (2005).

    Article  Google Scholar 

  30. Peterka, R.J. Sensorimotor integration in human postural control. J. Neurophysiol. 88, 1097–1118 (2002).

    Article  CAS  Google Scholar 

  31. Inglis, J.T., Horak, F.B., Shupert, C.L. & Jones-Rycewicz, C. The importance of somatosensory information in triggering and scaling automatic postural responses in humans. Exp. Brain Res. 101, 159–164 (1994).

    Article  CAS  Google Scholar 

  32. Inglis, J.T. & Macpherson, J.M. Bilateral labyrinthectomy in the cat: effects on the postural response to translation. J. Neurophysiol. 73, 1181–1191 (1995).

    Article  CAS  Google Scholar 

  33. Runge, C.F., Shupert, C.L., Horak, F.B. & Zajac, F.E. Role of vestibular information in initiation of rapid postural responses. Exp. Brain Res. 122, 403–412 (1998).

    Article  CAS  Google Scholar 

  34. Georgopoulos, A.P., Schwartz, A.B. & Kettner, R.E. Neuronal population coding of movement direction. Science 233, 1416–1419 (1986).

    Article  CAS  Google Scholar 

  35. Deliagina, T.G., Zelenin, P.V., Beloozerova, I.N. & Orlovsky, G.N. Nervous mechanisms controlling body posture. Physiol. Behav. published online 21 May 2007 (doi:10.1016/j.physbeh.2007.05.023).

    Article  CAS  Google Scholar 

  36. Macpherson, J.M. & Fung, J. Weight support and balance during perturbed stance in the chronic spinal cat. J. Neurophysiol. 82, 3066–3081 (1999).

    Article  CAS  Google Scholar 

  37. Hyngstrom, A.S., Johnson, M.D., Miller, J.F. & Heckman, C.J. Intrinsic electrical properties of spinal motoneurons vary with joint angle. Nat. Neurosci. 10, 363–369 (2007).

    Article  CAS  Google Scholar 

  38. Lin, D.C. & Rymer, W.Z. Damping actions of the neuromuscular system with inertial loads: soleus muscle of the decerebrate cat. J. Neurophysiol. 83, 652–658 (2000).

    Article  CAS  Google Scholar 

  39. Todorov, E. Optimality principles in sensorimotor control. Nat. Neurosci. 7, 907–915 (2004).

    Article  CAS  Google Scholar 

  40. Nashner, L.M. Fixed patterns of rapid postural responses among leg muscles during stance. Exp. Brain Res. 30, 13–24 (1977).

    Article  CAS  Google Scholar 

  41. Macpherson, J.M., Everaert, D.G., Stapley, P.J. & Ting, L.H. Bilateral vestibular loss in cats leads to active destabilization of balance during pitch and roll rotations of the support surface. J. Neurophysiol. 97, 4357–4367 (2007).

    Article  Google Scholar 

  42. Macpherson, J.M. The force constraint strategy for stance is independent of prior experience. Exp. Brain Res. 101, 397–405 (1994).

    Article  CAS  Google Scholar 

  43. Schafer, S.S. The acceleration response of a primary muscle-spindle ending to ramp stretch of the extrafusal muscle. Experientia 23, 1026–1027 (1967).

    Article  CAS  Google Scholar 

  44. Boyd, I.A. The histological structure of the receptors in the knee joint of the cat correlated with their physiologic response. J. Physiol. (Lond.) 124, 476–488 (1954).

    Article  CAS  Google Scholar 

  45. Johansson, R.S., Riso, R., Hager, C. & Backstrom, L. Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude. Exp. Brain Res. 89, 181–191 (1992).

    Article  CAS  Google Scholar 

  46. Jeka, J., Kiemel, T., Creath, R., Horak, F.B. & Peterka, R.J. Controlling human upright posture: velocity information is more accurate than position or acceleration. J. Neurophysiol. 92, 2368–2379 (2004).

    Article  Google Scholar 

  47. Poggio, T. & Bizzi, E. Generalization in vision and motor control. Nature 431, 768–774 (2004).

    Article  CAS  Google Scholar 

  48. Chhabra, M. & Jacobs, R.A. Properties of synergies arising from a theory of optimal motor behavior. Neural Comput. 18, 2320–2342 (2006).

    Article  Google Scholar 

  49. Soechting, J.F. & Lacquaniti, F. Quantitative evaluation of the electromyographic responses to multidirectional load perturbations of the human arm. J. Neurophysiol. 59, 1296–1313 (1988).

    Article  CAS  Google Scholar 

  50. van der Kooij, H., Jacobs, R., Koopman, B. & Grootenboer, H. A multisensory integration model of human stance control. Biol. Cybern. 80, 299–308 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J.M. Macpherson and P.J. Stapley for use of the data and helpful comments, R.J. Peterka for his technical guidance, A. Koenig for help with the simulations, and J.L. McKay for his insightful editorial assistance. This work was supported by Whitaker Grant RG–02–0747.

Author information

Authors and Affiliations

Authors

Contributions

D.B.L. developed and validated the TSyID and DQR formulations, performed the simulations and data analysis and contributed to writing the manuscript. L.H.T. conceptualized the model, developed the dual-ramp perturbations, participated in experiments, supervised the research and wrote the manuscript.

Corresponding author

Correspondence to Lena H Ting.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lockhart, D., Ting, L. Optimal sensorimotor transformations for balance. Nat Neurosci 10, 1329–1336 (2007). https://doi.org/10.1038/nn1986

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1986

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing