Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Essential function of HIPK2 in TGFβ-dependent survival of midbrain dopamine neurons

This article has been updated

Abstract

Transforming growth factor beta (TGFβ) is a potent trophic factor for midbrain dopamine (DA) neurons, but its in vivo function and signaling mechanisms are not entirely understood. We show that the transcriptional cofactor homeodomain interacting protein kinase 2 (HIPK2) is required for the TGFβ-mediated survival of mouse DA neurons. The targeted deletion of Hipk2 has no deleterious effect on the neurogenesis of DA neurons, but leads to a selective loss of these neurons that is due to increased apoptosis during programmed cell death. As a consequence, Hipk2−/− mutants show an array of psychomotor abnormalities. The function of HIPK2 depends on its interaction with receptor-regulated Smads to activate TGFβ target genes. In support of this notion, DA neurons from Hipk2−/− mutants fail to survive in the presence of TGFβ3 and Tgfβ3−/− mutants show DA neuron abnormalities similar to those seen in Hipk2−/− mutants. These data underscore the importance of the TGFβ-Smad-HIPK2 pathway in the survival of DA neurons and its potential as a therapeutic target for promoting DA neuron survival during neurodegeneration.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Expression of HIPK2 in midbrain DA neurons during development and in postnatal life.
Figure 2: Loss of DA neurons in the SNpc and VTA of Hipk2−/− mutants.
Figure 3: Motor behavioral abnormalities in Hipk2−/− mutants.
Figure 4: Reduced response to unfamiliar environment and to amphetamine challenge in Hipk2−/− mutants.
Figure 5: Loss of HIPK2 does not affect neurogenesis in DA neurons.
Figure 6: Loss of HIPK2 leads to increased apoptosis of DA neurons during periods of PCD.
Figure 7: HIPK2 is important in the TGFβ-Smad signaling pathway.
Figure 8: Loss of TGFβ3, but not TGFβ1, leads to DA neuron deficiencies similar to those in Hipk2−/− mutants.

Similar content being viewed by others

Change history

  • 25 January 2007

    removed "n" added "t"

References

  1. Manji, H.K., Drevets, W.C. & Charney, D.S. The cellular neurobiology of depression. Nat. Med. 7, 541–547 (2001).

    Article  CAS  Google Scholar 

  2. Dauer, W. & Przedborski, S. Parkinson's disease: mechanisms and models. Neuron 39, 889–909 (2003).

    Article  CAS  Google Scholar 

  3. Jackson-Lewis, V. et al. Developmental cell death in dopaminergic neurons of the substantia nigra of mice. J. Comp. Neurol. 424, 476–488 (2000).

    Article  CAS  Google Scholar 

  4. Oppenheim, R.W. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14, 453–501 (1991).

    Article  CAS  Google Scholar 

  5. Hyman, C. et al. Overlapping and distinct actions of the neurotrophins BDNF, NT-3, and NT-4/5 on cultured dopaminergic and GABAergic neurons of the ventral mesencephalon. J. Neurosci. 14, 335–347 (1994).

    Article  CAS  Google Scholar 

  6. Hynes, M.A. et al. Neurotrophin-4/5 is a survival factor for embryonic midbrain dopaminergic neurons in enriched cultures. J. Neurosci. Res. 37, 144–154 (1994).

    Article  CAS  Google Scholar 

  7. Lin, L.F., Doherty, D.H., Lile, J.D., Bektesh, S. & Collins, F. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science 260, 1130–1132 (1993).

    Article  CAS  Google Scholar 

  8. Farkas, L.M., Dunker, N., Roussa, E., Unsicker, K. & Krieglstein, K. Transforming growth factor-beta(s) are essential for the development of midbrain dopaminergic neurons in vitro and in vivo. J. Neurosci. 23, 5178–5186 (2003).

    Article  CAS  Google Scholar 

  9. Poulsen, K.T. et al. TGF beta 2 and TGF beta 3 are potent survival factors for midbrain dopaminergic neurons. Neuron 13, 1245–1252 (1994).

    Article  CAS  Google Scholar 

  10. Airaksinen, M.S. & Saarma, M. The GDNF family: signalling, biological functions and therapeutic value. Nat. Rev. Neurosci. 3, 383–394 (2002).

    Article  CAS  Google Scholar 

  11. Chao, M.V. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat. Rev. Neurosci. 4, 299–309 (2003).

    Article  CAS  Google Scholar 

  12. Barde, Y.A. Trophic factors and neuronal survival. Neuron 2, 1525–1534 (1989).

    Article  CAS  Google Scholar 

  13. Oo, T.F., Kholodilov, N. & Burke, R.E. Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line-derived neurotrophic factor in vivo. J. Neurosci. 23, 5141–5148 (2003).

    Article  CAS  Google Scholar 

  14. Kholodilov, N. et al. Regulation of the development of mesencephalic dopaminergic systems by the selective expression of glial cell line-derived neurotrophic factor in their targets. J. Neurosci. 24, 3136–3146 (2004).

    Article  CAS  Google Scholar 

  15. Enomoto, H., Heuckeroth, R.O., Golden, J.P., Johnson, E.M. & Milbrandt, J. Development of cranial parasympathetic ganglia requires sequential actions of GDNF and neurturin. Development 127, 4877–4889 (2000).

    CAS  PubMed  Google Scholar 

  16. Cacalano, G. et al. GFRalpha1 is an essential receptor component for GDNF in the developing nervous system and kidney. Neuron 21, 53–62 (1998).

    Article  CAS  Google Scholar 

  17. Enomoto, H. et al. GFR alpha1-deficient mice have deficits in the enteric nervous system and kidneys. Neuron 21, 317–324 (1998).

    Article  CAS  Google Scholar 

  18. Krieglstein, K., Suter-Crazzolara, C., Fischer, W.H. & Unsicker, K. TGF-beta superfamily members promote survival of midbrain dopaminergic neurons and protect them against MPP+ toxicity. EMBO J. 14, 736–742 (1995).

    Article  CAS  Google Scholar 

  19. Flanders, K.C. et al. Localization and actions of transforming growth factor-beta s in the embryonic nervous system. Development 113, 183–191 (1991).

    CAS  PubMed  Google Scholar 

  20. Unsicker, K., Flanders, K.C., Cissel, D.S., Lafyatis, R. & Sporn, M.B. Transforming growth factor beta isoforms in the adult rat central and peripheral nervous system. Neuroscience 44, 613–625 (1991).

    Article  CAS  Google Scholar 

  21. Massague, J., Seoane, J. & Wotton, D. Smad transcription factors. Genes Dev. 19, 2783–2810 (2005).

    Article  CAS  Google Scholar 

  22. Harada, J. et al. Requirement of the co-repressor homeodomain-interacting protein kinase 2 for ski-mediated inhibition of bone morphogenetic protein-induced transcriptional activation. J. Biol. Chem. 278, 38998–39005 (2003).

    Article  CAS  Google Scholar 

  23. Wiggins, A.K. et al. Interaction of Brn3a and HIPK2 mediates transcriptional repression of sensory neuron survival. J. Cell Biol. 167, 257–267 (2004).

    Article  CAS  Google Scholar 

  24. Yamada, T., McGeer, P.L., Baimbridge, K.G. & McGeer, E.G. Relative sparing in Parkinson's disease of substantia nigra dopamine neurons containing calbindin-D28K. Brain Res. 526, 303–307 (1990).

    Article  CAS  Google Scholar 

  25. Zhou, Q.Y. & Palmiter, R.D. Dopamine-deficient mice are severely hypoactive, adipsic, and aphagic. Cell 83, 1197–1209 (1995).

    Article  CAS  Google Scholar 

  26. Szczypka, M.S. et al. Feeding behavior in dopamine-deficient mice. Proc. Natl. Acad. Sci. USA 96, 12138–12143 (1999).

    Article  CAS  Google Scholar 

  27. Fernagut, P.O., Diguet, E., Labattu, B. & Tison, F. A simple method to measure stride length as an index of nigrostriatal dysfunction in mice. J. Neurosci. Methods 113, 123–130 (2002).

    Article  Google Scholar 

  28. Lin, A.H. et al. Global analysis of Smad2/3-dependent TGF-beta signaling in living mice reveals prominent tissue-specific responses to injury. J. Immunol. 175, 547–554 (2005).

    Article  CAS  Google Scholar 

  29. Kim, Y.H., Choi, C.Y., Lee, S.J., Conti, M.A. & Kim, Y. Homeodomain-interacting protein kinases, a novel family of co-repressors for homeodomain transcription factors. J. Biol. Chem. 273, 25875–25879 (1998).

    Article  CAS  Google Scholar 

  30. Kim, Y.H., Choi, C.Y. & Kim, Y. Covalent modification of the homeodomain-interacting protein kinase 2 (HIPK2) by the ubiquitin-like protein SUMO-1. Proc. Natl. Acad. Sci. USA 96, 12350–12355 (1999).

    Article  CAS  Google Scholar 

  31. Kaartinen, V. et al. Abnormal lung development and cleft palate in mice lacking TGF-beta 3 indicates defects of epithelial-mesenchymal interaction. Nat. Genet. 11, 415–421 (1995).

    Article  CAS  Google Scholar 

  32. Proetzel, G. et al. Transforming growth factor-beta 3 is required for secondary palate fusion. Nat. Genet. 11, 409–414 (1995).

    Article  CAS  Google Scholar 

  33. Brionne, T.C., Tesseur, I., Masliah, E. & Wyss-Coray, T. Loss of TGF-beta 1 leads to increased neuronal cell death and microgliosis in mouse brain. Neuron 40, 1133–1145 (2003).

    Article  CAS  Google Scholar 

  34. Bonyadi, M. et al. Mapping of a major genetic modifier of embryonic lethality in TGF beta 1 knockout mice. Nat. Genet. 15, 207–211 (1997).

    Article  CAS  Google Scholar 

  35. Shull, M.M. et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 359, 693–699 (1992).

    Article  CAS  Google Scholar 

  36. Kele, J. et al. Neurogenin 2 is required for the development of ventral midbrain dopaminergic neurons. Development 133, 495–505 (2006).

    Article  CAS  Google Scholar 

  37. Andersson, E., Jensen, J.B., Parmar, M., Guillemot, F. & Bjorklund, A. Development of the mesencephalic dopaminergic neuron system is compromised in the absence of neurogenin 2. Development 133, 507–516 (2006).

    Article  CAS  Google Scholar 

  38. Lie, D.C. et al. The adult substantia nigra contains progenitor cells with neurogenic potential. J. Neurosci. 22, 6639–6649 (2002).

    Article  CAS  Google Scholar 

  39. Krieglstein, K. et al. Reduction of endogenous transforming growth factors beta prevents ontogenetic neuron death. Nat. Neurosci. 3, 1085–1090 (2000).

    Article  CAS  Google Scholar 

  40. Hofmann, T.G. et al. Regulation of p53 activity by its interaction with homeodomain- interacting protein kinase-2. Nat. Cell Biol. 4, 1–10 (2002).

    Article  CAS  Google Scholar 

  41. D'Orazi, G. et al. Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat. Cell Biol. 4, 11–19 (2002).

    Article  CAS  Google Scholar 

  42. Gresko, E. et al. Autoregulatory control of the p53 response by caspase-mediated processing of HIPK2. EMBO J. 25, 1883–1894 (2006).

    Article  CAS  Google Scholar 

  43. Roussa, E. et al. Transforming growth factor beta is required for differentiation of mouse mesencephalic progenitors into dopaminergic neurons in vitro and in vivo: ectopic induction in dorsal mesencephalon. Stem Cells 24, 2120–2129 (2006).

    Article  CAS  Google Scholar 

  44. Zhang, F., Endo, S., Cleary, L.J., Eskin, A. & Byrne, J.H. Role of transforming growth factor-beta in long-term synaptic facilitation in Aplysia. Science 275, 1318–1320 (1997).

    Article  CAS  Google Scholar 

  45. Chin, J., Angers, A., Cleary, L.J., Eskin, A. & Byrne, J.H. Transforming growth factor beta1 alters synapsin distribution and modulates synaptic depression in Aplysia. J. Neurosci. 22, RC220 (2002).

    Article  CAS  Google Scholar 

  46. Rawson, J.M., Lee, M., Kennedy, E.L. & Selleck, S.B. Drosophila neuromuscular synapse assembly and function require the TGF-beta type I receptor saxophone and the transcription factor Mad. J. Neurobiol. 55, 134–150 (2003).

    Article  CAS  Google Scholar 

  47. Aberle, H. et al. wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila. Neuron 33, 545–558 (2002).

    Article  CAS  Google Scholar 

  48. McCabe, B.D. et al. Highwire regulates presynaptic BMP signaling essential for synaptic growth. Neuron 41, 891–905 (2004).

    Article  CAS  Google Scholar 

  49. Marques, G. et al. The Drosophila BMP type II receptor Wishful Thinking regulates neuromuscular synapse morphology and function. Neuron 33, 529–543 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.F. Reichardt and S. Pleasure for comments on the manuscript. Special thanks to J. Siegenthaler for TGFβ1 antibody, D.J. Anderson for Ngn2 antibody, R. Akhurst for Tgfβ1 mutants, T. Doestchman for Tgfβ3 mutants, D. Di Monte for dopamine HPLC assays, T. Wyss-Coray for Smads and SBE-luciferase plasmids, A. Buckley for characterizing HIPK2LacZ expression, S. Ku for mutant HIPK2 plasmids, C. Wong for histology and G. Wei for generating Hipk2 mutants. V.P. was supported in part by a postdoctoral fellowship from the American Parkinson Disease Association. This work was supported by grants from the National Institute of Neurological Disorders and Stroke (NS44223 and NS48393), a Pilot Project Grant from the University of California San Francisco (UCSF) Alzheimer's Disease Research Center (AG23501), Veteran's Administration Merit Review, Presidential Early Career Award for Scientists and Engineers, National Parkinson Foundation, and The Michael J. Fox Foundation for Parkinson's Research to E.J.H., funds from the state of California for medical research on alcohol and drug abuse through UCSF to P.H.J., and grants from the US National Institutes of Health to P.H.J. and L.H.T.

Author information

Authors and Affiliations

Authors

Contributions

J.Z., V.P., A.T.T. and S.T. performed the cellular, molecular and histological experiments and the mouse genetics. L.H.T. supervised and S.J.B. and J.H. performed the Open Field, Rotorod and D1 agonist tests. P.H.J. supervised and J.H. performed the amphetamine tests. J.Z., V.P. and E.J.H. wrote the manuscript.

Corresponding author

Correspondence to Eric J Huang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Absence of HIPK2 expression in locus ceruleus and striatum. (PDF 889 kb)

Supplementary Fig. 2

No detectable reduction in the number of GABAergic neurons (panel a) or the entire volume (panel b) of substantia nigra pars reticularis (SNpr). (PDF 1547 kb)

Supplementary Fig. 3

Loss of HIPK2 has no negative impact on the expression of cell fate or differentiation markers for DA neurons. (PDF 965 kb)

Supplementary Fig. 4

Co-localization of DA neuron marker Nurr1 and activated caspase 3 in SNpc of P0 Hipk2−/− mutants. (PDF 2153 kb)

Supplementary Fig. 5

A working model for HIPK2 in the downstream signaling pathway of TGFβ. (PDF 262 kb)

Supplementary Fig. 6

Determination of total TuJ1–positive and TH–positive neuron numbers in ventral mesencephalon cultures. (PDF 151 kb)

Supplementary Table 1

Genetic background and the number of midbrain dopamine neurons. (PDF 91 kb)

Supplementary Methods (PDF 149 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, J., Pho, V., Bonasera, S. et al. Essential function of HIPK2 in TGFβ-dependent survival of midbrain dopamine neurons. Nat Neurosci 10, 77–86 (2007). https://doi.org/10.1038/nn1816

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn1816

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing