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Development of Middle Stone Age innovation
linked to rapid climate change
Martin Ziegler1,w, Margit H. Simon1, Ian R. Hall1, Stephen Barker1, Chris Stringer2 & Rainer Zahn3,4

The development of modernity in early human populations has been linked to pulsed phases

of technological and behavioural innovation within the Middle Stone Age of South Africa.

However, the trigger for these intermittent pulses of technological innovation is an enigma.

Here we show that, contrary to some previous studies, the occurrence of innovation was

tightly linked to abrupt climate change. Major innovational pulses occurred at times when

South African climate changed rapidly towards more humid conditions, while northern sub-

Saharan Africa experienced widespread droughts, as the Northern Hemisphere entered

phases of extreme cooling. These millennial-scale teleconnections resulted from the bipolar

seesaw behaviour of the Atlantic Ocean related to changes in the ocean circulation. These

conditions led to humid pulses in South Africa and potentially to the creation of favourable

environmental conditions. This strongly implies that innovational pulses of early modern

human behaviour were climatically influenced and linked to the adoption of refugia.
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A
rchaeological and genetic evidence suggest that anatomi-
cally modern humans (the modern form of Homo
sapiens) originated in Africa during the Middle Stone

Age (MSA), which lasted from about 280,000–30,000 years ago1,2,
although fossil and genetic data are ambivalent about specific
areas of origin2. There has also been considerable debate about
the factors behind cultural evolution in general, and the
emergence of modern human behaviours in particular3. By
analogy with the forces driving biological evolution, cultural
change might, for example, have largely been caused by random
factors such as drift4, or driven by adverse conditions5, or be due
to increases in population density and networking6.

Excavations in South African archaeological sites (Fig. 1) and
new developments in dating techniques place the South African
MSA industries in a very well-constrained temporal context7–12.

These studies document several abrupt pulses of major
technological advancement that have been interpreted to reflect
the emergence of modern behaviours of innovation, language and
cultural identity7,11. Among the most important periods are the
South African Still Bay (SB) and Howiesons Poort (HP) industries
that are dated to B71,500 and 64,000–59,000 years ago and are
widely viewed as dynamic periods of MSA innovation. Examples
include symbolic expression through engraved ochres, stone and
bone tools, shell jewellery and plant bedding constructions7,10,12.
These periods of innovation appear to be unique and as such they
may have been one of the forces behind the growth and dispersal
of human populations within and out of Africa2,13. However, the
causes behind the timing of the seemingly irregular appearance,
punctuated occupational episodes and sudden disappearance of
these industries in South Africa are poorly understood. While it
has been speculated that there may have been some impact of
local- to regional-scale environmental variations8,14, it has also
been argued that climate change had little part in the
development of MSA industries7.

A diverse range of climates characterizes modern South Africa,
including the Mediterranean climate of the Western Cape,
(semi-) desert conditions of the West Coast and the subtropical
climate in the eastern part. There is a high degree of interannual
rainfall variability, which impacts greatly on water resources,
agriculture and rural communities. Regional climate in the
Eastern Cape is dominated by austral summer rainfall, primarily
dictated by the seasonal interplay between subtropical high-
pressure cells and the migration of easterly flows associated with
the Intertropical Convergence Zone (ITCZ) that brings rain to the
tropics (Fig. 2). The region becomes cool and dry during the
austral winter months as the land surface cools relative to the
oceans and a broad anticyclonic circulation prevails.

Recent studies have improved our general understanding of the
climatic mechanisms governing hydrological changes in tropical
and subtropical sub-Saharan Africa over the Pleistocene and
suggest that recurrent latitudinal shifts of the ITCZ acted as a
primary forcing factor of climate change on these timescales15–17.
During the last million years or so, global climate has repeatedly
alternated between interglacial (akin to pre-industrial conditions)
and glacial states (with large continental ice sheets in the
Northern Hemisphere) with an average pacing of B100 kyr
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Figure 2 | Modern rainfall variability over Africa. (a) January and (b) August. Colours indicate days per month with measurable rainfall. The climate over

large parts of Africa is characterized by a strong seasonality with summer monsoonal rainfall and the approximate position of the ITCZ (red band) migrating

between the north and south of the continent over the course of the year.
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through the combined influences of orbital precession and
obliquity on insolation18. Tropical climate and its monsoonal
systems follow a different pacing (23 kyr), due to the
dominance of orbital precession in driving low-latitude
summer insolation19–21. Stronger summer insolation intensifies
atmospheric convection and in consequence leads to higher
rainfall. Such a link between precession forcing and long-term
changes in monsoonal climates is supported by climate modelling
studies19,22. As a consequence of the precessional forcing, boreal
and austral summer insolations vary out of phase and the average
position of the ITCZ migrates latitudinally20,23.

In addition to orbital-scale variability, global climate over the
last few glacial cycles has been punctuated by changes on much
shorter timescales24. These millennial-scale climate fluctuations
are characterized by abrupt (often within decades) and large (up
to 10 �C in mean annual temperatures) changes in Northern
Hemisphere high-latitude temperatures, as recorded in Greenland
ice-core records25 and out-of-phase but equally abrupt
temperature changes in the South Atlantic Ocean26 with more
gradual changes over Antarctica27. This bipolar seesaw behaviour
has been linked to changes in the strength of the Atlantic
meridional overturning circulation and its effect on the
distribution of heat between the hemispheres28. In response to
abrupt Northern Hemisphere cooling, the annual average
position of the ITCZ shifts to a more southward position, again
resulting in an opposing response between the northern
hemisphere, where monsoons weaken20,29 and the southern
hemisphere where monsoons strengthen30,31. The presence of a
large-scale atmospheric teleconnection linking Northern
Hemisphere cold events and precipitation changes in sub-
Saharan Africa is also consistent with climate modelling
experiments32–34.

Here we present a marine record of highly variable runoff from
coastal rivers to the eastern South African continental margin that
reflects rainfall variability in the Eastern Cape during the MSA,
and provides evidence for a direct link between abrupt climate
change and the development of cultural complexity in early
humans.

Results
High-resolution record of river discharge in SE Africa. Marine
sediment core CD154-17-17K (33� 16.130 S, 029� 07.290 E,
3,333m water depth) was retrieved from B95 km off the Eastern
Cape coast near the mouth of the Great Kei river (Fig. 1). The
initial chronology of the core is established through eight radio-
carbon dates in the upper part of the core and graphically cor-
relating the planktonic foraminiferal (Globigerinoides ruber)
oxygen isotope (d18O) record to the Antarctic deuterium (tem-
perature) record of the EPICA Dome C ice core35. The planktonic
d18O record reflects the combined influence of ambient sea-
surface temperature variability in the Agulhas Current and global
ice volume changes and shows a good fit with the long-term
temperature variability in Antarctica (Fig. 3). The sediment core
spans a time period of approximately the last 100,000 years with
an average sedimentation rate of 4 cm kyr� 1. Elemental
concentrations across the whole core were obtained with an
X-ray fluorescence (XRF) core scanner (ITRAX). The relative
element intensity counts obtained from the XRF scanning were
calibrated to concentrations using a suite of individual samples
analysed for absolute bulk elemental composition. The major
oxide elemental ratios in sediments from CD154-17-17K are very
similar to the ratios in the suspended load of rivers in South
Africa36 that drain similar rock types as the Great Kei river,
suggesting that the terrestrial material is of local origin. The most
proximal source for terrestrial material to CD154-17-17K is the

Great Kei river, which is B520 km long and has a catchment area
of 20,566 km2, forming the southern border of the Transkei coast
of the Eastern Cape (Fig. 1). Several other rivers also enter the
Indian Ocean to the north of our core site. These include the
Mbashe, Umzimvubu and Umtata rivers, as well as the Tugela,
the largest in the KwaZulu-Natal Province. These rivers are all
typical brown-water rivers, characterized by high sediment loads.
Their sediments, in particular those derived from the latosol-type
soils, derived from mudstones and sandstones of the Karoo
Supergroup and associated intruded dolerites (‘Ironstone’) within
the catchment areas, are notably rich in iron (Fe) oxides.
Consequently, the Fe/Ca ratio recorded in CD154-17-17K can be
used as a first-order indication of relative changes in the amount
of fine (Fe-rich) terrigenous components supplied to the core site
from regional river discharge. However, we use the Iron/
Potassium (Fe/K) ratio as a more reliable proxy, as it is
independent of possible variations in biogenic carbonate input.
Fe/K ratios serve as indicator of changes between humid and dry
conditions34,37. Govin et al.37 demonstrate, that the spatial
distributions of Fe/K in marine core-top samples reflect the
relative input of intensively weathered material from humid
regions versus slightly weathered particles from drier areas. In
tropical humid regions, high precipitation promotes intense
chemical weathering of bedrocks38, resulting in highly weathered
soils whose geochemical signature, rich in Fe, is transferred to
marine sediments by fluvial input. In contrast, K derives from
potassium feldspar or illite, which are both characteristic of drier
regions with low chemical weathering rates39. Govin et al.37 find
that low Fe/K values indicate dominant deposition of only slightly
weathered particles originating from relatively dry areas on the
subtropical African margin. Conversely, suspended material from
the major river systems exhibits high Fe/K ratios. In addition, the
spatial Fe/K distribution observed along the African continental
margin and in African dust- and river-suspended samples reflects
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Figure 3 | Age model construction. (a) Graphical correlation of G. ruber

d18O record of CD154-17-17K (red) to the EPICA Dome C deuterium record

(purple) (EPICA) on speleothem-timescale of ref. 24. Age control points as

dots, red dots are based on radiocarbon dates and blue dots are based on

the tuning of the foraminiferal d18O record. (b) d18O splice from Chinese

speleothems (green) (Hulu and Sanbao Cave)20,48. (c) Fe/K ratio of

CD154-17-17K on the initial age model. (d) Fe/Ca ratio of CD154-17-17K on

the initial age model. Stippled lines show the fine-tuning of the initial

age model through graphical correlation of Fe/K ratio of CD154-17-17K to
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the spatial distribution of African soil types. High Fe/K values
recorded in the tropics reflect the presence of intensively
weathered soils enriched in Fe over the adjacent continent.
Govin et al.37 conclude therefore, that Fe/K ratios of surface
sediments can be used to reconstruct African and South
American climatic zones. Fe/K ratios have also been applied as
a proxy for fluvial versus aeolian input, with high values
indicating an increased supply of river-suspended material
relative to dust deposition34. Together, these proxies provide a
high-resolution record of variable hydrological conditions in the
Eastern Cape.

Millennial-scale climate variability in the Eastern Cape. The Fe/
Ca and Fe/K records are prominently punctuated by a series of
abrupt events, indicating pulses in river input and more humid
conditions (Fig. 3). Within the uncertainty of our age model, it is
possible to link each individual event in the Fe/K record to a
corresponding millennial-scale cold event in the Northern
Hemisphere temperature as documented in Greenland Ice core
records25. The amplitude of the long-term variability appears to
be larger in the Fe/Ca record than in the Fe/K ratio, which may
indicate that variable carbonate production and preservation may
have an additional role on these longer timescales. Sea-level
changes may have had an impact as well, with increased valley
river incision during sea-level low stands and, in consequence, a
larger discharge of terrigenous sediments. However, these
processes have no effect on the ratio of the terrigenous
elements Fe and K.

Modelling studies confirm that remote atmospheric forcing
during Northern Hemisphere cold events is a key driver of
hydrological variability in South Africa, resulting in wetter
conditions during these events40–42. A mean southeastward
shift in the positions of the South Indian and South Atlantic
Ocean anticyclones would lead to increased rainfall over the
Eastern Cape. In contrast, palaeoclimate reconstructions from
Lake Malawi15, Lake Tanganyika43 and the Sahel zone34 indicate
much dryer conditions associated with Northern Hemisphere
cold events, reflecting the southward shift of the ITCZ during
these periods. Similarly, West Africa experienced weaker
monsoonal precipitation during these events29. Evidence from
an ocean–atmosphere general circulation model44 suggests that
this linkage also occurs because a weakened meridional
overturning circulation in the Atlantic Ocean leads to a bipolar
seesaw warming response in the equatorial South Atlantic
Ocean28, and consequently a reduction in West African
summer monsoonal winds and rainfall over West Africa29.
While large parts of sub-Saharan Africa faced severe dry
conditions during North Atlantic cold events45, South Africa
apparently experienced more humid conditions. Precipitation in
the Eastern Cape is strongly dependent on the Agulhas Current
sea-surface temperatures, with a warm current providing supply
of low-level moisture and buoyancy to facilitate the occurrence
of deep convection and rainfall, as the onshore flow reaches
the coast46. Associated with the bipolar seesaw response, the
Southern Ocean experiences a southward shift of the subtropical
front during North Atlantic cold events26, and a southward shift
of the southern Hemisphere Westerlies is associated with an
increase in the wind stress curl in the South Indian Ocean and
warming in the Agulhas Current47.

The East Asian summer monsoon also responded sensitively to
these glacial cooling events in the Northern Hemisphere. Oxygen
isotope records in speleothems from Chinese Caves provide a
high-resolution and precisely dated (U/Th) record of East Asian–
Indian Monsoon intensity20,48,49 and indicate weakened
monsoon intensity during Northern Hemisphere cold events.

When compared directly, our record of Eastern Cape riverine
input (humid versus dry conditions) and the Chinese speleothem
record show a remarkable similarity in the structure of
millennial-scale events (Fig. 3) that also fit dynamically with the
interhemispheric signal propagation in that they indicate opposite
wet–dry successions between the records. We take advantage of
the precise absolute dating of the speleothem record to further
fine-tune the age-scale of CD154-17-17K by synchronizing
transitions into and out of the millennial excursions in both
records. The average age difference between the initial and this
fine-tuned age model is only 0.07 kyr. Absolute age differences for
individual tie points are generally within 1 kyr and always less
than ±1.8 kyr and are therefore well within the age uncertainty
of the initial low-resolution planktonic foraminiferal d18O-based
age model. We adopt the speleothem-based ages in the following
detailed comparison of millennial-scale climate events with the
archaeological record and the dates of well-documented phases in
behavioural and technological innovation such as the SB and HP
industries of the MSA7.

Discussion
Many different views have developed about possible links
between climate change and the appearance or disappearance of
MSA industries such as the SB and HP in southern Africa. Early
work speculated that the HP was the result of changes in the
adaptation of an indigenous population in response to environ-
mental change50. At the time, age control of the archaeological
record, as well as the palaeenvironmental records, was not
sufficient to test this hypothesis. It was later also argued that
changes in the Earth’s orbital configuration led to the
development of relatively cool and wet conditions in southern
Africa during Marine Isotope Stage (MIS) 4 (ref. 51), while
speleothem deposits recovered at Pinnacle Point Cave on the
southern coast suggest variable conditions prevailed at this
time14, broadly coeval with the SB and HP industries. It has also
been argued that rather than catastrophic events, variability
associated with spatially and temporally complex climate
conditions is a significant factor in itself52. Recently, McCall
and Thomas53 have taken this view further by proposing that the
mobility patterns and organizational characteristics of the SB may
have been part of a strategy for dealing with environmental
unpredictability and short-term climate fluctuations that
occurred during this interval. They argued that human
populations were relatively large following expansion during the
benign conditions of MIS 5, but the SB and HP industries
followed as a stress response to the colder and more variable
conditions of MIS 4. There have also been arguments for the
origins of the SB and HP industries in demographic terms as
bursts of population increase and consequent higher
archaeological visibility54.

We find a striking correspondence between the archaeological
record of South Africa and the timing of abrupt climate change as
inferred from our CD154-17-17 marine palaeo-record on the
chronology of the absolutely dated speleothem record (Fig. 4).
Major events of occupation in archaeological sites coincide
consistently with North Atlantic cold events, weakened Asian
summer monsoon periods and inferred increased river discharge
and humid conditions in the Eastern Cape. The age of the SB
industry (71.9–71.0 ka (ref. 7)) coincides within the error margins
with one of the most extreme cold events in the Northern
Hemisphere (cold Greenland stadial 19), a period of a particularly
weak Asian Monsoon lasting from B72.8 to 71.5 ka. An earlier
settlement (early SB) with plant bedding construction at Sibudu
Cave (B77 ka) (ref. 12) can be also linked to one of the first
abrupt North Atlantic cold events (cold Greenland stadial 20) at
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the MIS 5/4 transition (77.1–76.4 ka). Similarly, the duration of
the HP industry (64.8–59.5 ka (ref. 7)) coincides with cold
conditions in the North Atlantic Ocean and a dry phase in Asia.
Our record from core CD154-17-17K suggests particularly wet
(humid) conditions in the Eastern Cape during each of these
intervals. The abrupt ending of the HP industry at B59.5 ka
coincides with a rapid transition to drier conditions. During this
transition, the Northern Hemisphere warmed abruptly (into MIS
3) and summer monsoon strength in West Africa and Asia
increased. MSA events and occupation of the major sites during
MIS 3 are rare. This may be explained by generally drier
conditions in South Africa, whereas improved conditions in East
Africa may have shifted the main focus of demographic
expansion and innovation to that region. However, three well-
dated occupational pulses at Sibudu Cave, which have been
named as post-HP (58.5þ /� 1.4 ka), late MSA (47.7þ /
� 1.4 ka) and final MSA (38.6þ /� 1.9 ka (ref. 8)) again
correlate well with abrupt Northern Hemisphere cold events
(Heinrich events). Our marine sediment core again indicates
again short pulses of wetter conditions in the Eastern Cape. Our
findings are supported by evidence from Sibudu Cave, where
sediments that have built up during occupational periods indicate
relatively moist conditions55.

Dates of MSA events predating the SB and HP industries are
rare and have larger age uncertainties. The intermittent human

occupation at Pinnacle Point Cave, showing evidence for the
utilization of marine resources as well as the production of stone
tools11, has been linked to sea-level changes56. Some of these
dates at Pinnacle Point are greater than the oldest samples from
our record. However, the Chinese speleothem record, which may
be used as a template for the interhemispheric teleconnection that
we observe, indicates a particularly weak East Asian monsoon
around the older occupational phases at B120 ka and 165 ka, and
hence we can infer that these settlements probably coincided with
wetter conditions in South Africa. The date of a 100,000-year-old
ochre workshop at Blombos Cave has a relatively large
uncertainty9 but appears to fall within a period of wet
conditions in SE Africa during the precession maximum of
MIS5b. Comparing the dates of occupational phases during the
Later Stone Age with the Fe record again corroborates the overall
relationship. One example is a period of limited archaeological
Later Stone Age evidence in South Africa that dates between 24
and 16 ka (ref. 57), and which coincides with a longer period of
continuously dry conditions in South Africa during the last glacial
maximum.

The remarkable correlation between the millennial-scale
Northern Hemisphere cold events (independently dated in the
Chinese speleothem record) and the documented archaeological
evidence on land for pulsed phases of human expansion and
technological innovation suggests that the well-known major
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progressions in the development of modern humans during the
MSA can be linked with intervals of abrupt climate change. A
major control on survival for any human population is access to
fresh water supply. Abrupt Northern Hemisphere cooling events
and the associated major shifts in tropical climate dynamics led to
extended droughts in large parts of the African continent, which
potentially repeatedly bottlenecked early human populations
elsewhere. However, conversely, the same abrupt cooling also
created favourable humid ‘refugial’ conditions in southern Africa,
which along with the highly diverse vegetation (Cape Floral
Kingdom) and a rich coastal ecosystem, would have combined to
provide ample resources for early human expansion56. The
resultant demographic pulses can be linked to the innovations of
the SB and HP industries, thus supporting one of the key models
of cultural change in the Palaeolithic—a correlation between
innovation and the adoption of new refugia with subsequent
increases in population size, density and both intra- and inter-
group networking6. Moreover, such climate-driven pulses in
southern Africa and more widely were probably fundamental to
the origin of key elements of modern human behaviour in Africa,
and to the subsequent dispersal of Homo sapiens from its
ancestral homeland2. Our record of recurrent moist humid
episodes serves as a template for future archaeological work to
assess if the connection with abrupt climate change extends to
other as yet less-well-documented innovation pulses in Africa.

Methods
Planktonic oxygen isotopes. Surface-dwelling planktonic foraminiferal species
Globigerinoides ruber was picked from the 250–315 mm size fraction for oxygen
isotope (d18O) analyses. At least 25 specimen for each sample were analysed. All
the analyses were performed using a Thermo Scientific Delta V Advantage mass
spectrometer with an automated carbonate preparation device (GasBench III) at
the Cardiff University stable isotope laboratory. Stable isotope results were cali-
brated to the PDB scale by international standard NBS19. The analytical precision
is better than ±0.1%.

Bulk elemental concentrations. XRF core scanning allows analysis of the chemical
composition of marine sediments directly at the surface of a split sediment core.
The XRF core scanning technique is nondestructive, nearly continuous and com-
parably fast. The chemical composition of the sediment is measured in element
intensities in total counts, which are proportional to the chemical concentrations. A
detailed description of the scanning methodology can be found in Croudace
et al.58. Core scanning was performed using the ITRAX XRF Core scanner at the
British Ocean Core Research Facility (BOSCORF, Southampton). Measurements
were made at 1 cm resolution with a count time of 30 s, at 30 kV and 50mA on the
X-ray tube.

Additionally to the XRF scanning, major element and trace elements were
analysed for a subset of samples. This subset of samples has been used to calibrate
the XRF scanning counts (Fig. 5). Analysis was performed by a Thermo X Series 2
inductively coupled plasma mass spectrometer (ICP-MS). Approximately 2 g of
freeze-dried and ground sediment was ignited in a furnace at 900 �C (58) loss on
ignition values. Whole-sediment major element concentrations were obtained
following Li metaborate fusion59. The internationally recognized standard JB-1A
was run alongside the sample batch. Long-term relative standard deviations show
precision of 1–2% for major trace elements for JB-1A.

Age model. The chronology of core CD154-17-17K is derived from eight
radiocarbon dates in the upper part of the record (Table 1) and additionally
by graphical correlation of the planktonic foraminiferal (G. ruber) oxygen
(d18O) isotope record to the deuterium (temperature) record of Antarctic ice
core EPICA Dome C35 on the on the Speleo-age model of Barker et al.24

(Fig. 2, Table 2). The planktonic d18O record reflects the combined
influences of local sea-surface temperature variability and global ice volume
changes and a limited number of age control points is sufficient to achieve
a very good fit with the temperature record from Antarctica. This age model
shows that the sediment core spans the time period over the last B100,000 years
with an average sedimentation rate of 4 cm kyr� 1, ranging from 1.5–5.2 cm kyr� 1.
To further fine-tune the age model, we visually match common transitions
within the Fe/K ratio and the speleothem record from Chinese Caves, Hulu48

and Sanbao20 (Fig. 3). We produced a spliced record from the following
records: SB 26 (0.46–5.32 ka), SB10 (5.36–11.59 ka), H82 (11.60–14.94 ka),
SB3 (14.96–19.21), MSD (19.21–52.23 ka), MSL (52.43–70 ka), SB22 (70–98.59),
SB23 (99–103 ka). When individual stalagmite records were selected for the splice,
it was aimed to achieve best possible age control and resolution. The data from
Hulu Cave stalagmites have been corrected for a constant offset between the
two caves20.
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Elemental records. We use the variations in Fe and Fe/K ratios as proxies for
terrestrial, fluvial input and indicators for humid/dry conditions on land, respec-
tively. The XRF scanning intensities of terrestrial elements in marine sediment
cores have been applied in many studies to trace the supply of terrestrial material to
the ocean. Fe-XRF counts have been successfully applied in a large number of
palaeoceanographic studies as proxy for varying river discharge in particular in
tropical regions. The most proximal source for terrestrial material in the sediments
of our core CD154-17-17K is the Great Kei river. Several other rivers also enter the
Indian Ocean to the north of our core site. These include the Mbashe, Umzimvubu
and Umtata rivers, as well as the Tugela; the largest in the KwaZulu-Natal Pro-
vince. These rivers are all typical brown-water rivers, characterized by high sedi-
ment loads. Their sediments, in particular, those derived from the latosol-type soils,
derive from mudstones and sandstones of the Karoo Supergroup and associated
intruded dolerites (‘Ironstone’) within the catchment areas, and are notably rich in
iron oxides. Although sedimentary Fe can be prone to diagenetic remobilization in
pore waters, we expect no diagenetic alteration of the Fe record due to the setting of
CD154-17-17K in a low-productivity environment and with well-ventilated deep
water bathing the site. Accordingly, downcore Fe concentration shows no corre-
lation with Mn (Fig. 6), which also suggests that redox processes have no impact on
the Fe record. Additionally, we also observe no oxide coatings on the biogenic

carbonates. Dilution processes can also affect the interpretation of single-element
concentrations. Carbonate dissolution and changes in carbonate production can
substantially impact on single-element records. Being less sensitive to dilution
effects, elemental ratios are more useful60. Fe is related to the siliciclastic
components of the sediment and vary with the terrigenous fraction of the sediment,
whereas Ca commonly reflects the biogenic carbonate content of the sediment. A
detailed core-top study of in the Atlantic demonstrates that Fe/Ca ratios are very
low on the mid-Atlantic ridge and high along the continental margins, in particular
in regions of high fluvial input from the Gambia, Sanaga, Congo and Orange rivers
along Africa, and from the Orinoco, Amazon and Plata rivers along South
America37. In consequence of this distribution, Fe/Ca ratios have hence been used
to trace changes in terrigenous input of mainly fluvial origin, particularly offshore
Northeastern Brazil61,62, Western Africa63 as well as South-Eastern Africa17.
Nevertheless, it needs to be noted that elemental ratios including Ca do not simply
reflect the flux of terrigenous material, but they rather reflect the amount of
terrigenous input relative to the biogenic carbonate flux/preservation.

Table 2 | Age control points for the age model of sediment
record CD154-17-17K.

Radiocarbon dates

Tuning of planktonic
d18O of CD154-17-17K
to EPICA dome C on

Speleo age

Additional tuning of
Fe/K of CD154-17-
17K to Chinese
speleothem d18O

splice

Depth
(cm)

Age
(kyr)

Depth
(cm)

Age
(kyr)

Depth
(cm)

Age
(kyr)

0.5 1.8 164.5 47 33.5 13.6
18.5 7.3 204.5 58.9 40.5 16.5
38.5 14.1 222.5 63.8 72.5 24
48.5 18.8 238.5 69.8 88.5 30.5
78.5 28.4 252.5 75.8 102.5 34.2
126.5 39.5 361.5 98 108.5 35.5
156.5 45.4 119.5 38.5

126.5 39.5
132.5 40.4
141.5 42.1
149.5 44
156.5 45.4
171.5 47.8
178.5 49.3
189.5 55.1
193.5 55.7
214.5 60.3
242.5 71.2
245.5 72.1
255.5 77.1
300.5 83
326.5 90.5
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Figure 6 | Additional XRF scanning profiles from CD154-17-17K. Ca
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Table 1 | 14C dates for CD154-17-17K.

Depth (cm)
MD02-2588 Species

14C age BP
(years)

Error
(years)

Calculated age,
lower (years)

Calculated age,
upper (years) Code

0–1 G. ruber 2,200 25 1,760 1,849 KIA 47083
18–19 G. ruber 6,735 þ40/� 35 7,220 7,314 KIA 47084
38–39 G. ruber 12,500 60 13,853 14,017 KIA 47085
48–49 G. ruber 16,120 90 18,702 18,941 KIA 47086
78–79 G. ruber 24,050 þ 200/� 190 28,119 28,617 KIA 47087
126–127 G. ruber 35,340 þ 820/� 720 39,071 40,881 KIA 47088
156–157 G. ruber 45,470 þ 3,080/� 2,220 46,374 450,000 KIA 47089
188–189 G. ruber 444,780 KIA 47090

Calibration of radiocarbon dates was performed using the Calib software with the Marine09 calibration and DR¼0. Calendar age range is 1s.
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16. Castañeda, I. S. et al. Wet phases in the Sahara/Sahel region and human
migration patterns in North Africa. Proc. Natl Acad. Sci. USA 106,
20159–20163 (2009).

17. Schefu�, E., Kuhlmann, H., Mollenhauer, G., Prange, M. & Pätzold, J. Forcing
of wet phases in southeast Africa over the past 17,000 years. Nature 480,
509–512 (2011).

18. Huybers, P. Combined obliquity and precession pacing of late Pleistocene
deglaciations. Nature 480, 229–232 (2011).

19. Kutzbach, J. E. Monsoon climate of the early holocene: Climate experiment with
the earth’s orbital parameters for 9000 years ago. Science 214, 59–61 (1981).

20. Wang, Y. et al.Millennial- and orbital-scale changes in the East Asian monsoon
over the past 224,000 years. Nature 451, 1090–1093 (2008).

21. Scholz, C. A. et al. East African megadroughts between 135 and 75 thousand
years ago and bearing on early-modern human origins. Proc. Natl Acad. Sci.
104, 16416–16421 (2007).

22. Ziegler, M. et al. Precession phasing offset between Indian summer monsoon
and Arabian Sea productivity linked to changes in Atlantic overturning
circulation. Paleoceanography 25, doi:10.1029/2009PA001884 (2010).

23. Cruz, F. W. et al. Insolation-driven changes in atmospheric circulation over the
past 116,000 years in subtropical Brazil. Nature 434, 63–66 (2005).

24. Barker, S. et al. 800,000 Years of abrupt climate variability. Science 334,
347–351 (2011).

25. NGRIP. High-resolution record of Northern Hemisphere climate extending
into the last interglacial period. Nature 431, 147–151 (2004).

26. Barker, S. et al. Interhemispheric Atlantic seesaw response during the last
deglaciation. Nature 457, 1097–1102 (2009).

27. Blunier, T. & Brook, E. J. Timing of millennial-scale climate change in antarctica
and greenland during the last glacial period. Science 291, 109–112 (2001).

28. Broecker, W. S. Paleocean circulation during the last deglaciation: a bipolar
seesaw? Paleoceanography 13, 119–121 (1998).

29. Weldeab, S., Lea, D. W., Schneider, R. R. & Andersen, N. 155,000 Years
of West African monsoon and ocean thermal evolution. Science 316,
1303–1307 (2007).

30. Kanner, L. C., Burns, S. J., Cheng, H. & Edwards, R. L. High-latitude forcing of
the South American Summer monsoon during the last glacial. Science 335,
570–573 (2012).

31. Wang, X. et al. Wet periods in northeastern Brazil over the past 210 kyr linked
to distant climate anomalies. Nature 432, 740–743 (2004).

32. Broccoli, A. J., Dahl, K. A. & Stouffer, R. J. Response of the ITCZ to Northern
Hemisphere cooling. Geophys. Res. Lett. 33, doi:10.1029/2005GL024546 (2006).

33. Chiang, J. C. H., Biasutti, M. & Battisti, D. S. Sensitivity of the Atlantic
Intertropical Convergence Zone to Last Glacial Maximum boundary
conditions. Paleoceanography 18, 18–11 (2003).

34. Mulitza, S. et al. Sahel megadroughts triggered by glacial slowdowns of Atlantic
meridional overturning. Paleoceanography 23, doi:10.1029/2008pa001637 (2008).

35. EPICA. Eight glacial cycles from an Antarctic ice core. Nature 429, 623–628
(2004).

36. Compton, J. S. & Maake, L. Source of the suspended load of the upper Orange
River, South Africa. South Afr. J. Geol. 110, 339–348 (2007).

37. Govin, A. et al. Distribution of major elements in Atlantic surface sediments
(36N & 11 S): imprint of terrigenous input and continental weathering.
Geochem. Geophys. Geosyst. 13, Q01013 (2012).

38. Middelburg, J. J., van der Weijden, C. H. & Woittiez, J. R. W. Chemical
processes affecting the mobility of major, minor and trace elements during
weathering of granitic rocks. Chem. Geol. 68, 253–273 (1988).

39. Zabel, M. et al. Late quaternary climate changes in Central Africa as
Inferred from Terrigenous Input to the Niger Fan. Quat. Res. 56, 207–217
(2001).

40. Lewis, S. C., LeGrande, A. N., Kelley, M. & Schmidt, G. A. Water vapour source
impacts on oxygen isotope variability in tropical precipitation during Heinrich
events. Clim. Past 6, 325–343 (2010).

41. Carto, S. L., Weaver, A. J., Hetherington, R., Lam, Y. & Wiebe, E. C. Out of
Africa and into an ice age: on the role of global climate change in the late
Pleistocene migration of early modern humans out of Africa. J. Hum. Evol. 56,
139–151 (2009).

42. Thomas, D. S. G., Bailey, R., Shaw, P. A., Durcan, J. A. & Singarayer, J. S.
Late Quaternary highstands at Lake Chilwa, Malawi: frequency, timing and
possible forcing mechanisms in the last 44 ka. Quaternary Sci. Rev. 28, 526–539
(2009).

43. Tierney, J. E. et al. Northern hemisphere controls on tropical southeast African
climate during the past 60,000 years. Science 322, 252–255 (2008).

44. Chang, P. et al. Oceanic link between abrupt changes in the north Atlantic
ocean and the African monsoon. Nat. Geosci. 1, 444–448 (2008).

45. Stager, J. C., Ryves, D. B., Chase, B. M. & Pausata, F. S. R. Catastrophic drought
in the Afro-Asian monsoon region during Heinrich event 1. Science 331,
1299–1302 (2011).

46. Singleton, A. T. & Reason, C. J. C. Numerical simulations of a severe rainfall
event over the Eastern Cape coast of South Africa: sensitivity to sea surface
temperature and topography. Tellus A 58, 355–367 (2006).

47. Rouault, M., Penven, P. & Pohl, B. Warming in the Agulhas Current system
since the 1980s. Geophys. Res. Lett. 36, L12602 (2009).

48. Wang, Y. J. et al. A high-resolution absolute-dated late pleistocene monsoon
record from Hulu Cave, China. Science 294, 2345–2348 (2001).

49. Pausata, F. S. R., Battisti, D. S., Nisancioglu, K. H. & Bitz, C. M. Chinese
stalagmite d18O controlled by changes in the Indian monsoon during a
simulated Heinrich event. Nat. Geosci. 4, 474–480 (2011).

50. Ambrose, S. H. & Lorenz, K. G. in The Emergence of Modern Humans: An
Archaeological Perspective (Mellars, P. ed) Ch. 1 3–33 (Cornell University Press
1989).

51. Chase, B. M. South African palaeoenvironments during marine oxygen isotope
stage 4: a context for the Howiesons Poort and Still Bay industries. J. Archaeol.
Sci. 37, 1359–1366 (2010).

52. Thomas, D. S. G., Burrough, S. L. & Parker, A. G. Extreme events as drivers of
early human behaviour in Africa? The case for variability, not catastrophic
drought. J. Quaternary Sci. 27, 7–12 (2012).

53. McCall, G. S. & Thomas, J. T. Still Bay and Howiesons Poort Foraging
Strategies: recent research and models of culture change. Afr. Archeolog. Rev.
29, 7–50 (2012).

54. Jacobs, Z. & Roberts, R. G. Catalysts for Stone Age innovations: what might
have triggered two short-lived bursts of technological and behavioral
innovation in southern Africa during the Middle Stone Age? Commun. Integr.
Biol. 2, 191–193 (2009).

55. Wadley, L. Partners in grime: results of multi-disciplinary archeology at Sibudu
Cave. Southern Afr. Human. 18, 315–341 (2006).

56. Marean, C. W. Pinnacle Point Cave 13B (Western Cape Province, South Afirca)
in context: The Cape Floral kingdom, shellfish, and modern human origins.
J. Hum. Evol. 59, 425–443 (2010).

57. Lewis, C. A. Late Quaternary climatic changes, and associated human
responses, during the lastB45 000 yr in the Eastern and adjoining Western
Cape, South Africa. Earth Sci. Rev. 88, 167–187 (2008).

58. Croudace, I. W., Rindby, A. & Rothwell, R. G. In New Techniques in Sediment
Core Analysis Vol. 267 Special Publications (Rothwell, R. G. ed) 51–63
(Geological Society, 2006).

59. McDonald, I. & Viljoen, K. S. Platinum-group element geochemistry of mantle
eclogites: a reconnaissance study of xenoliths from the Orapa kimberlite,
Botswana. Appl. Earth Sci. IMM Trans. B 115, 81–93 (2006).

60. Weltje, G. J. & Tjallingii, R. Calibration of XRF core scanners for quantitative
geochemical logging of sediment cores: theory and application. Earth Planet.
Sci. Lett. 274, 423–438 (2008).

61. Arz, H. W., Pätzold, J. & Wefer, G. Correlated millennial-scale changes in
surface hydrography and terrigenous sediment yield inferred from

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms2897

8 NATURE COMMUNICATIONS | 4:1905 | DOI: 10.1038/ncomms2897 | www.nature.com/naturecommunications

& 2013 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


Last-Glacial marine deposits off northeastern Brazil. Quat. Res. 50, 157–166
(1998).

62. Arz, H. W., Pätzold, J. & Wefer, G. The deglacial history of the western tropical
Atlantic as inferred from high resolution stable isotope records off northeastern
Brazil. Earth Planet. Sci. Lett. 167, 105–117 (1999).
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