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On-demand optogenetic control of spontaneous
seizures in temporal lobe epilepsy

Esther Krook-Magnuson'*, Caren Armstrong"*, Mikko Oijala' & Ivan Soltesz'

Temporal lobe epilepsy is the most common type of epilepsy in adults, is often medically
refractory, and due to broad actions and long-time scales, current systemic treatments have
major negative side-effects. However, temporal lobe seizures tend to arise from discrete
regions before overt clinical behaviour, making temporally and spatially specific treatment
theoretically possible. Here we report the arrest of spontaneous seizures using a real-time,
closed-loop, response system and in vivo optogenetics in a mouse model of temporal lobe
epilepsy. Either optogenetic inhibition of excitatory principal cells, or activation of a sub-
population of GABAergic cells representing <5% of hippocampal neurons, stops seizures
rapidly upon light application. These results demonstrate that spontaneous temporal lobe
seizures can be detected and terminated by modulating specific cell populations in a spatially
restricted manner. A clinical approach built on these principles may overcome many of the
side-effects of currently available treatment options.
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actually comprises a number of distinct clinical disease

entities, each with different phenotypes, underlying
mechanisms, involved brain structures and prognoses!. In part
because of their unpredictable nature, seizures can dramatically
interfere with the daily lives of patients. This same feature poses
an obvious challenge to the development of ideal therapeutic
strategies that act only on an ‘as-needed’ basis, which would
avoid disrupting normal interictal behaviours and reduce the
frequently debilitating negative side-effects of currently available
medications.

Epilepsies are often categorized as being either generalized or
partial. In generalized epilepsies such as absence epilepsy, seizures
begin with an immediate change in level of consciousness, and
electroencephalography (EEG) abnormalities appear across wide-
spread brain areas simultaneously. In partial epilepsies such as
temporal lobe epilepsy (TLE), however, early seizure activity
appears in a restricted region and may or may not progress to
involve the entire brain or affect level of consciousness®. This
feature of TLE is clinically significant because it provides a
theoretical time window for intervention between electrographic
seizure onset and the onset of altered mental status. Thus, it is
hypothetically possible to implement a temporally restricted
therapeutic strategy for TLE and other partial epilepsies during
early ictal activity, which could prevent consciousness-altering
seizure progression without disrupting brain function during
interictal time periods. While there is currently no Food and Drug
Administration-approved on-demand treatment for epilepsy,
clinical trials using closed-loop electrical stimulation have
shown promise?.

Optogenetic techniques provide immediate, tempora? control
of specific cell populations using light-sensitive opsins*~, making
them ideal candidates for on-demand seizure control. Indeed,
in vitro and in vivo studies support the use of optogenetics to
control seizure activity’ ™. However, temporal specificity in
epilepsy treatment additionally requires an accurate, fast
method of detecting and responding to unpredictable seizures.
This poses an additional challenge for on-demand treatment for
TLE, because wunlike in thalamocortical epilepsy, the
electrographic appearance of seizures varies considerably
between individuals. Additionally, the presence of interictal
spiking makes rapid and selective detection of ictal events more
challenging.

We developed a novel, tunable closed-loop seizure-detection
programme to identify and rapidly respond to seizures. Seizures
were detected in real-time, triggering light delivery which was
randomized, such that 50% of events received light and 50%
served as no-light internal controls. When inhibitory opsins were
expressed in excitatory principal cells, light application rapidly
stopped seizures. Moreover, seizure control was also achieved
when excitatory opsins were selectively expressed only in a
subpopulation of inhibitory cells, which make up <5% of
neurons in the hippocampus!®!!. These results demonstrate that
spontaneous temporal lobe seizures can be detected and stopped
even by directly affecting only specific cell populations in a
spatially restricted manner. The insight obtained from exploring
seizure cessation by on-demand optogenetics provides an
approach, based on direct modulation of a minimum number
of cells and only at the time of a seizure, for the development of
less disruptive interventions than are currently available for
treating TLE.

Epilepsy, a disorder of recurrent, spontaneous seizures

Results
Real-time detection of spontaneous temporal lobe seizures. To
induce TLE in mice, we injected kainate (KA) unilaterally into the

dorsal hippocampus. This model reproduces key features of
unilateral human hippocampal sclerosis, (Supplementary Fig. S1),
and results in seizures that typically arise near the sclerotic
region!>714, Both electrographic-only (little or no behavioural
manifestations), as well as overtly behavioural (defined as
minimally stage 3-4 on a modified Racine scale, with forelimb
clonus plus rearing!®), spontaneous, recurrent seizures emerged
over a period of weeks. We then implanted intrahippocampal
depth electrodes and individual optical fibres (Methods).
Seizures were detected using custom software (Fig. 1, detailed
in Supplementary Methods and Supplementary Fig. S2). Briefly,
detection was tuned to the specific EEG signature of the seizures
in each chronically epileptic animal, using combinations of the
following features: (1) signal power properties (magnitude, rate of
change), (2) spike features (amplitude, width, rate, regularity) and
(3) frequency properties (changes in energy within specific
frequency bands). The tuning of the detection algorithm to each
animal allowed us to quickly and accurately detect varying
electrographic seizure morphologies and to intervene in real-time
with both sensitivity and specificity (Supplementary Note 1).

Direct inhibition of principal cells with halorhodopsin. For
opsin expression, we utilized two cell-type specific strategies
expected to decrease principal cell activity. The first approach was
to directly inhibit excitatory principal cells. We crossed mice
expressing Cre under the calcium/calmodulin-dependent protein
kinase II alpha promoter (CamK-Cre!®) with mice expressing the
inhibitory opsin halorhodopsin (HR) Cre-dependently (Ai39
(ref.17)) to generate animals-expressing HR in CamKII-
expressing cells (Cam-HR mice).

We utilized a single optical fibre placed just dorsal to the
ipsilateral hippocampus near the site of KA injection to deliver
light (amber, 589 nm) to a limited volume of tissue (estimated
volume: <0.1mm?® Methods). This effectively controlled
electrographic seizures in all Cam-HR animals tested (n=6
animals, P<0.01 for each animal, two-sample Kolmogorov—-
Smirnov (K-S) and two-tailed Mann-Whitney (M-W) tests,
Fig. 2). On average, 57 £ 12% of seizures stopped within 1s of
light delivery, and seizure duration postdetection was reduced by
70 £ 8% (‘duration reduction’; seizure duration light versus no-
light, n =6 animals: P<0.05, Wilcoxon test; duration reduction
in opsin expressing, n = 6 animals, versus negative controls, n =3
animals: P<0.05, M-W; Fig. 2g-i). This indicates that temporal
lobe seizures can be stopped by appropriately timed and,
importantly, spatially restricted intervention.

Although off-peak for the activation spectrum of HR, red light,
which has greater tissue penetration, has been shown in vitro to
activate HR®!7, In Cam-HR animals in vivo, red light (635 nm)
significantly controlled seizures, with a 57 +14% duration
reduction, and 46+ 12% stopping within 1s (significant
duration reduction in 3 of 3 animals, P<0.01 each, K-S and
M-W). This indicates the clinical potential for using red light with
future optogenetic therapies, which not only could reach a larger
volume of tissue, but may also eventually allow light to be
delivered less invasively (that is, especially with the continued
advancement of red-shifted opsins®!8, it may be possible to reach
even deep tissue transcranially).

Finally, as a large per cent of seizures were stopped within 5s
of light delivery, we examined whether similar seizure control
could also be obtained while delivering light over a shorter
time frame. Not unexpectedly, the per cent of seizures stopping
within 5s was not affected by the reduction in light duration;
there was also no significant impact on seizure duration reduction
(per cent stopping within 5s of light: 58 + 8% with 30's of light;
58 £ 12% with 10s of light, P = 1, Wilcoxon; duration reduction:
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Figure 1 | Closed-loop system design. EEG input (blue) from the mouse hippocampus is amplified (Amp), digitized (A/D) and relayed to a PC running a
custom-designed real-time seizure detection software. The signal is fed into a number of possible detection algorithms, which utilize features of signal
power, spikes or frequency (sample schematics are presented here; detailed methodology is provided in Supplementary Methods). Thresholds for power
and spike properties (green) are determined using tunable leaky integrators acting as low-pass filters. Top: Amplitude Correlation (purple, during an
example seizure, shown in grey); Middle: spike characteristics (for example, amplitude, rate, regularity and spike width, shown in red); Bottom: power of the
signal in specific frequency bands during the same seizure, with warmer colours representing higher energy. Once a seizure has been detected using the
selected criteria, for 50% of the events in a random fashion (RND), the software activates the optical output (orange) delivered to the hippocampus of the
mouse, via a TTL signal from the digitizer to the laser. All trigger events, however, are flagged for later off-line analysis. COMP, digital comparator. USB,

universal serial bus.

53+ 7% with 30s of light; 42+ 12% with 10s of light, P=0.6,
Wilcoxon; n=4).

Excitation of inhibitory PV-containing GABAergic cells. The
second cell-type specific strategy we tested for stopping seizures
was to activate a subpopulation of GABAergic cells. Although
parvalbumin (PV)-containing cells represent <5% of hippo-
campal neurons'®!!, PV-containing cells are known to have a
major role in synchronizing principal cell populations during
gamma oscillations'®~2!, and individual PV-containing cells can
contact over 1,000 pyramidal cells in CA1 (ref. 10). Therefore, we
asked whether the coordinated activation of PV cells could
exacerbate the synchronous discharge of neurons®® during
seizures and thus potentially prolong them, or alternatively, if
their inhibition of principal cells could reduce seizure duration.
Selective expression of excitatory channelrhodopsin (ChR2) in
PV-containing GABAergic cells was achieved by crossing PV-Cre
mice?? with mice-expressing ChR2 Cre-dependently (Ai32
(ref.17)) (Fig. 3). Light delivery (blue, 473nm) to the
hippocampus ipsilateral to KA injection in PV-ChR2 mice
significantly shortened seizures: 43+ 11% duration reduction,
59+ 11% stopping within 5s of light delivery (seizure duration
light versus no-light, n=8 animals, P<0.05, M-W; at the
individual animal level, 5 of 8 animals showed a significant effect,
P<0.05 each, M-W and K-S tests, Fig. 3c,e). This indicates that
opsin-mediated activation of PV cells does not exacerbate, but
instead curtails seizures. Moreover, these findings demonstrate
that not only can a temporally and spatially restricted treatment
approach control seizures, but also that a more cell-type specific

approach, directly affecting only a small proportion of neurons
within the area of illumination, can provide significant seizure
control.

Approximately 60% of seizures in the intrahippocampal KA
model start in the hippocampus ipsilateral to KA injection!2. In
this model, as well as in human epileptic patients, a proportion of
seizures can also arise from the contralateral hippocampus,
sometimes referred to as a ‘mirror focus’'>?3, We, therefore,
tested the effect of light delivery to the contralateral hippocampus
of PV-ChR2 mice. Although the electrographic seizures were
recorded in the hippocampus ipsilateral to KA injection,
contralateral light still significantly suppressed seizures (37 £ 4%
duration reduction, 58 + 8% stopping within 5 s; seizure duration
light versus no-light, n =6 animals: P<0.05, Wilcoxon; 5 of 6
animals showed a significant reduction at the individual animal
level, K-S and M-W; Fig. 3d(f). Indeed, opsin activation
significantly reduced seizure duration in a comparable fashion
when light was delivered to the hippocampus either ipsilateral or
contralateral to KA injection and electrode placement (ipsilateral
versus contralateral light stimulation P=0.51; opsin-expressing
versus opsin-negative littermate controls P<0.05; two-way
analysis of variance, Holm-Bonferroni test; n=11 opsin-
negative littermate control animals, 10 tested ipsilateral, 9 tested
contralateral to KA injection; no interaction, P=0.89). These
results demonstrate that the ipsilateral hippocampus is not the
only potential target for optogenetic intervention. Importantly,
because seizures were detected from one hemisphere, and light
delivered to the other, this further demonstrated that the effect of
light on seizures was not confined to the region directly
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Figure 2 | Seizure control in mice-expressing HR in principal cells in a model of TLE. (a) Crossing CamK-Cre and Cre-dependent HR mouse lines

generated mice expressing the inhibitory opsin HR in excitatory cells (Cam-HR mice). (b) Experimental timeline. (c-e) Example electrographic seizures
detected (vertical green bars), activating amber light (589 nm) randomly for 50% of events (light: amber line, example in d; no-light example in e).

(f) Typical example distribution of postdetection seizure durations (5's bin size) during light (solid amber) and no-light internal control conditions (hashed
grey). Inset: first 5s bin expanded, 1s bin size. Note that most seizures stop within 1s of light delivery. (g-i) Group Cam-HR data showing the per cent of
seizures stopping within 5s of detection (g), within 1s of detection (h), and the average postdetection seizure duration (normalized to average no-light
postdetection duration for each animal) (i). Note that in one animal (shown in c-e), all seizures were stopped within 1s of light delivery. Averaged data:

filled circles. Error bars represent s.e.m. Scale bars in c-e, 100V, 5s.

illuminated by the optical fibre, and suggests that contralateral
connexions are important in ongoing seizure activity in vivo.

Opsin-mediated cellular effects of light stimulation. Successful
seizure intervention with opsin expression limited to PV-
expressing neurons prompted us to consider the likely extent of
our on-demand intervention in vivo. Note that not only was opsin
expression in these animals limited to a fraction of neurons
(<5%), but also the light intervention was spatially restricted.
Given the average power measured post hoc from the tips of
implanted fibres (9.7 +1.5mW), and the reported irradiance
values required for activating opsins®?%, we estimate that
sufficient blue light reached a depth of <1mm in these
animals (Fig. 4a). Moreover, with the on-demand application of
brief pulses of light that we used in our experiments, it does not
appear that PV cells are driven to fire beyond physiological firing
rates, as we did not observe an increase in the number or
proportion of PV cells expressing c-Fos (an immediate early gene

activated in response to increased cell activity) following 2h of
on-demand stimulation as used in our experiments (c-Fos
expression was found in only 4 of 316 PV cells; Fig. 4b).
However, if we used an extreme paradigm of continuous light
pulses (50 ms on, 100 ms off) for 2 h, rather than only on-demand
at the time of seizures, we observed a marked increase in c-Fos
expression in PV cells (286 of 475 PV cells). Note that this
increase in c-Fos expression in PV cells was only seen in PV-
ChR2 opsin-expressing, and not PV-ChR2 opsin-negative control
animals also receiving such an extreme light paradigm (opsin-
negative: 5 of 430 PV cells expressed c-Fos; Fig. 4b,c).

To further address the specificity of light-mediated currents, we
performed whole-cell patch-clamp recordings from hippocampal
slices prepared from opsin-expressing and opsin-negative
epileptic animals of both genotypes. In Cam-HR animals,
principal cells in opsin-expressing animals responded to light
with sustained outward currents, while no currents were induced
in cells of opsin-negative animals (Fig. 4d,e). Similarly, in
principal cells of PV-ChR2 opsin-expressing animals, light
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Figure 3 | Ipsilateral and contralateral control of seizures in PV-ChR2
mice. (a) Crossing PV-Cre and Cre-dependent ChR2 mouse lines generated
mice expressing the excitatory opsin ChR2 in PV-expressing GABAergic
cells (PV-ChR2 mice). (b) Example electrographic seizures in a PV-ChR2
mouse (top, no-light) truncated by blue (473 nm) light delivery (bottom,
blue line) to the hippocampus. (¢) Distributions of postdetection seizure
durations from the same animal during light and no-light conditions (solid
blue: light; hashed grey: no-light), when light was delivered (blue probe)
ipsilateral to the KA injection (grey hemisphere). (d) In the same animal,
light delivered instead to the hippocampus contralateral to KA injection also
shortens electrographic seizures. (e-f) Group data for PV-ChR2 animals
with light delivered ipsilateral (e) or contralateral (f) to the KA injection
site. Electrographic recordings were consistently from the hippocampus
ipsilateral to KA injection. Averaged data: filled circles. Error bars represent
s.em.

pulses induced inhibitory postsynaptic currents due to the
activation of presynaptic PV cells, while no currents were
induced in neurons from opsin-negative animals (Fig. 4f).

On-demand intervention reduces behavioural seizure
frequency. We next examined whether stopping electrographic
seizures can affect progression to overt behavioural seizures.
Overall, light produced a 29.6% reduction in behavioural seizures
(n =184 seizures from 9 animals, P< 0.05, 3% an example animal
is shown in Fig. 5). This reduction occurs despite the observation
that in the intrahippocampal KA model of TLE 27% of seizures

either start outside of the hippocampus or have diffuse areas of
onset'?; these seizures may be especially resistant to focal
intervention. Taken together, our results indicate that
optogenetic techniques can provide on-demand seizure control
for electrographic seizures and reduce the frequency of
behavioural seizures.

Discussion

In this paper, we demonstrate that spontaneous temporal lobe
seizures can be detected in real-time, and that spatially restricted
intervention can stop seizures. This is shown using two distinct
optogenetic approaches. First, using HR to directly inhibit
principle cells, and second, using ChR2 to excite PV-expressing
GABAergic neurons. In this latter approach, despite the fact that
< 5% of the illuminated neuronal population was directly affected
by light intervention, significant seizure control was still achieved,
stopping electrographic seizures and reducing the frequency of
behavioural seizures. These results demonstrate a potential for
using optogenetics with closed-loop seizure detection for a real-
time, spatially restricted, therapeutic intervention to control
spontaneous seizures in TLE.

TLE is the most common type of epilepsy in adults. Recently,
optogenetic techniques have been applied in models of other
types of epilepsy, namely focal cortical epilepsy® and stroke-
induced thalamocortical epilepsy’, supporting the general
applicability of optogenetic approaches to stopping seizures,
despite diverse underlying pathophysiologies. Importantly, we
demonstrate not only that TLE is amenable to optogenetic
intervention, but also that such intervention can be achieved
when targeting opsins to specific, very restricted cell populations.
Indeed, a major benefit of optogenetic approaches compared with
currently available electrical stimulation devices is cell-type
specificity. In this regard, optogenetic techniques can be
considered not only as opportunities to develop treatment
options directly, but also as a tool to better understand the
basic mechanisms of seizures and to identify cell populations that
might be more specifically targeted pharmacologically.
Optogenetics thus provides a means to further our
understanding of the roles of specific cell types in seizure
generation and cessation.

There is intense interest in developing a closed-loop, on-
demand, system for the treatment of epilepsy, due to the potential
outcome benefits of such temporally specific treatment. Online
seizure detection is more challenging in TLE than in thalamo-
cortical epilepsies; however, early intervention during seizures is
especially clinically relevant for TLE, as detection is possible
before generalization and altered levels of consciousness. Online
seizure detection has been reported in rodent models of
epilepsy®?>2%, as well as in clinical trials®. The combination of
online seizure detection and optogenetic control of temporal lobe
seizures described here may prove particularly powerful for future
therapeutics, allowing for a spatially, temporally and cell-type
selective intervention before overt clinical behaviour.

Methods

Animals. The molecular Cre-lox system permitted the expression of genetically
introduced ChR2, or HR in specific cell populations. Mice were generated by
crossing Cre lines-expressing Cre either in principal cells (CamK-Cre; B6.Cg-
Tg(Camk2a-cre)T29-1Stl/J; stock 005359 from Jackson labs®) or in PV-containing
GABAergic interneurons, including bistratified cells, fast-spiking basket cells and
axo-axonic (chandelier) cells!®27~2° (PV-Cre;B6;129P2-Pvalbtm1(Cre)Arbr/J;
stock 008069 from Jackson labs?2), with either floxed-STOP ChR mice (Ai32;
Rosa-CAG-LSLChR2H134R-EYFP-deltaNeo generated by Hongkui Zeng, obtained
from the Allen Institute; Ai32D is now available from Jackson labs, stock 012569
(ref. 17)) or floxed-STOP HR mice (Ai39; B6;129S-Gt(ROSA)26Sortm39
(CAGHOP/EYFP)Hze/]; generated by Hongkui Zeng, available from Jackson labs,
stock 014539 (ref. 17), maintained by crossing with C57BL/6] mice). These crosses
generated mice-expressing ChR in all PV-containing cells (PV-ChR) and mice-
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Figure 4 | Extent and specificity of light-activation of opsin-expressing cells. (a) Diagram of illumination. The fibres used in this study have a numerical
aperture (NA) of 0.37 and a radius (r) of 100 um. With an index of refraction (n) for brain tissue of 1.35, and a flat cleave tip, there is a half-angle (0) of
~16°. Given our average power measured post hoc from the implanted fibre tip, and reported irradiance values for activating opsins, we reach a depth (d) of
0.55mm for HR with amber light and 0.9 mm for ChR2 with blue light. Note that the diagram is not drawn to scale. (b) c-Fos expression is not induced in
PV cells after 2 h of on-demand light (green diamonds), but can be induced with continuously pulsed blue light for the entire 2 h (that is, not on-demand
light application, red squares) in PV-ChR2 opsin-expressing animals. Note that this c-Fos expression induced by 2 h long pulsed light application reflects
both direct and indirect activation over a prolonged time period (for example, through gap-junctions and network connexions). An increase in PV-cell c-Fos
expression was not observed without opsin expression (grey triangles). Light was delivered, and c-Fos expression examined, contralateral to the site of KA
injections. (¢) Example PV cells from PV-ChR2 opsin-expressing (top) and opsin-negative (bottom) animals in b. Green: PV. Red: c-Fos. Yellow:

co-localization. Scale bar, 10 um. (d,e) Long pulses of light (2 s on, 50 ms off; orange bars) produced robust outward (inhibitory) currents in CA1 pyramidal
(d) and granule cells (e) of epileptic Cam-HR opsin-expressing animals (green traces), but not epileptic opsin-negative littermate controls (black traces).
Scale bars, 1s, 100 pA. Holding potential, —60 mV. (f) A single pulse of light (10 ms) produces robust postsynaptic currents in two CA1 pyramidal cells
(dual recording) from a KA-treated PV-ChR2 opsin-expressing animal (green bolded trace, average of 15 individual sweeps, shown in light green). No-light-
induced responses were seen in opsin-negative animals (bottom, average trace shown in black). Scale bars, 20 ms, 40 pA. Holding potential, —80 mV.

expressing HR in principal cells (Cam-HR). Ospin-negative littermates were used
as non-expressing controls.

Epilepsy induction and monitoring. All procedures were approved by the UC
Irvine Animal Care and Use Committee. Surgical procedures were performed
stereotaxically under isofluorane anaesthesia and local nerve block induced by 0.5%
bupivacaine. Kainic acid (50-100 nl, 20 mM in saline, Tocris Bioscience) was
injected into the left dorsal hippocampus (2.0 mm posterior, 1.25 mm left, and
1.6 mm ventral to bregma) of mice on or after postnatal day 46. After recovery,
animals were returned to the vivarium for at least 2 weeks to allow for the
emergence of spontaneous recurrent seizures. Bipolar depth electrodes (Plas-
ticsOne) and optical fibres (0.37NA, Low OH, 200 pm diameter, ThorLabs) ter-
minated in 1.25mm ceramic ferrules (Kientec Systems, Inc.) were implanted
ipsilaterally (posterior 2.5 mm, left 1.75 mm, ventral 1.25 mm with respect to
bregma) and in some cases, also contralaterally at the same posteroventral position
into the hippocampus, targeting the dorsal stratum oriens of the CAl such that
emitted light would illuminate the hippocampal formation. Optical fibres and
electrodes were fixed to the skull using screws (McMaster-Carr) and dental cement
(Teets Cold Curing) and the animals were allowed to recover for several days
before beginning 24-h video and EEG monitoring for seizures and subsequent
closed-loop seizure detection and light delivery. On average, animals were
implanted 15 + 2.3 weeks after KA injection and the effect of light on seizures was

6

examined 15.9 + 1.4 weeks after KA injection (range: 2.4-24.6 weeks). There was
no correlation between seizure duration reduction and time since KA for either
Cam-HR or PV-ChR2 mice (P = 0.39 and P = 0.83, respectively, Spearman test; see
also Supplementary Fig. S3).

Closed-loop seizure detection and light delivery. Following the implant pro-
cedure, animals were connected through an electrical commutator (PlasticsOne) to
an analogue Brownlee 410 amplifier; signals were digitized by an NI USB-6221-
BNC digitizer (National Instruments) sampled at 500 Hz, and analysed in real-time
by a PC running a custom MATLAB seizure detection algorithm (see below).
Animals were also connected to a fibre-coupled diode laser (Shanghai Laser &
Optics Century Co., Ltd) of an appropriate wavelength to activate the opsin
expressed (blue =473 nm, amber = 589 nm, or red = 635 nm). Optical patch cords
(Thorlabs, Doric Lenses) directed the laser light to the mouse through an optical
commutator (Doric lenses), and were terminated in a 1.25 mm ferrule, which was
connected to the implanted optical fibre with a ceramic split sleeve (Precision Fibre
Products, Inc.). Average laser power at the source was 33 £ 3mW and the final
power at the tips of the implanted optical fibres (measured post hoc) was
9.711.5mW.

Continuous video and EEG monitoring established the presence of spontaneous
recurrent seizures in individual animals, at which time an experimenter used
custom MATLAB software to identify features of the early ictal electrographic
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Figure 5 | Reduction in behavioural seizure frequency. (a) Example
behavioural (stage 5) seizure (movement artifacts truncated). The vertical
green bar indicates online seizure detection, prior to the start of stage 4-5
behaviour (arrow). The yellow bars under the trace highlight the theoretical
window for intervention. Scale bars, 100 uV, 5s. (b) Distribution of
electrographic seizure duration after detection with (blue bars) and without
(grey hashed bars) bilateral light intervention. Note that for behavioural
seizure experiments in two animals light was delivered bilaterally.

(c) Significant reduction in the frequency of behavioural seizures occurring
during light compared with no-light (example animal; asterisk, P<0.05,
two-tailed binomial). Electrographic recordings were consistently from
the hippocampus ipsilateral to KA injection. Same mouse as shown in
examples in Figure 3.

signal to be used in triggering the real-time closed-loop seizure detection software.
The experimenter could select from a number of different inclusion or exclusion
criteria and could adjust thresholds to optimally detect the seizures with maximum
sensitivity and specificity. Briefly, the following features could be used alone or in
combination to tune the seizure detection algorithm (see Supplementary Methods
for additional details): (1) signal power properties (magnitude, rate of change),
(2) spike features (amplitude, width, rate, regularity) and (3) frequency properties
(changes in energy within specific frequency bands). Note that a simple spike
detection algorithm (for example, ref. 25) would be insufficient in this model of
epilepsy.

Once tuned, the custom closed-loop MATLAB software was used to activate the
laser in real-time during seizures. When the specified criteria were met, the detector
triggered, flagging the event for later review and in 50% of cases (in random
sequence) immediately triggered the activation of the laser connected to the animal.
Either short light pulses (50 ms on, 100 ms off) or long light pulses (2,000 ms on,
50 ms off) for 30-60s, unless otherwise noted in the text, were used to activate the
opsins.

Histology. For histological experiments, animals were deeply anaesthetized and
perfused with paraformaldehyde (for c-Fos experiments, this occurred immediately
following the 2h stimulation period), coronal sections were made and either
stained for c-Fos and PV (goat anti-parvalbumin PVG-214, Swant; rabbit anti-c-
Fos (4): sc-52, Santa Cruz Biotechnology), or using a standard Nissl protocol. PV
and c-Fos expression were examined from 50 pm sections every 200 pm
throughout the entire anterior—posterior extent of the hippocampus. For entorhinal
cortical histology, horizontal sections were made and stained using a fluorescent
Nissl stain (Molecular Probes, N-21479) prepared as per the manufacturer’s
instructions.

Slice electrophysiology. Whole-cell patch-clamp recordings were made from
coronal slices ipsilateral to the site of KA injection at 36 °C in artificial cere-
brospinal fluid containing (in mM) 2.5 KCl, 10 Glucose, 126 NaCl, 1.25 NaH,POy,
2 MgCl,, 2 CaCl,, 26 NaHCOj3; with intracellular solution containing (in mM) 90
potassium gluconate, 27.4 KCI, 1.8 NaCl, 1.7 MgCl,, 0.05 EGTA, 10 HEPES, 2 Mg-
ATP, 0.4 Na,-GTP, 10 phosphocreatine, 8 biocytin; pH 7.2; 270-290 mOsm;

pipette resistance: 3-4.5 MQ. Light was delivered through the epifluorscence port of
a Nikon Eclipse FN-1, using a Lambda DG-4 with smart shutter and LAMDA SC
controller (Shutter Instruments), and TTL input from a Digidata 1322A (Axon
Instruments).

Estimation of the tissue volume directly affected by light. The fibres used in
this study have a numerical aperture of 0.37, and a radius of 100 pm. With an
index of refraction for brain tissue of 1.35 (ref. 30), and a flat cleave tip, there is a
half-angle of ~16°. Given our average power measured post hoc from the
implanted fibre tip (9.7 mW), and reported irradiance values capable of activating
opsins (3.5mW/mm? for HR% 1 mW/mm? for ChR2 (ref. 24)), we reach a depth
of 0.55mm for HR with amber light and 0.9 mm for ChR2 with blue light
(Deisseroth Lab online light transmission calculator, http://www.stanford.edu/
group/dlab/cgi-bin/graph/chart.php). With the simplification of even light at the
end of the cone, this translates into a cone volume of 0.16 mm? for ChR2 and
0.06 mm? for HR.

Statistical analysis. Electrographic seizure duration before and after the time of
the trigger was analysed off-line by reviewers blinded to the light condition and
genotype of the animal, and behavioural seizures were confirmed by video and EEG
analysis. Seizure duration distributions for light and no-light conditions were
compared in each animal using a two-sample Kolmogorov-Smirnov test, and
seizure durations were compared using a two-tailed Mann-Whitney test. Effects on
seizure duration at the group level were tested using a Wilcoxon Signed Ranks Test.
Comparison of reduction in seizure duration between conditions for PV-ChR2
animals (light location and opsin expression) was made using a two-way analysis of
variance with Bonferroni-Holm tests. An effect of light on behavioural seizure
frequency was evaluated with a two-tailed y>-test. Only appropriately timed trig-
gers for behavioural seizures (that is, triggers during the electrographic-only por-
tion of the seizure, before, but within 60s of the emergence of overt behaviour)
were included in the final analysis. Values presented are mean *s.e.m. A P-value
<0.05 was considered significant. Statistical analysis was done using Microsoft
Excel 2007, OriginPro 8 and Google documents.
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