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Anyons—particles carrying fractional statistics that interpolate between bosons and  
fermions—have been conjectured to exist in low-dimensional systems. In the context of the 
fractional quantum Hall effect, quasi-particles made of electrons take the role of anyons whose 
statistical exchange phase is fixed by the filling factor. Here we propose an experimental setup 
to create anyons in one-dimensional lattices with fully tuneable exchange statistics. In our 
setup, anyons are created by bosons with occupation-dependent hopping amplitudes, which 
can be realized by assisted Raman tunnelling. The statistical angle can thus be controlled  
in situ by modifying the relative phase of external driving fields. This opens the fascinating 
possibility of smoothly transmuting bosons via anyons into fermions and of inducing a phase 
transition by the mere control of the particle statistics as a free parameter. In particular,  
we demonstrate how to induce a quantum phase transition from a superfluid into an exotic 
Mott-like state where the particle distribution exhibits plateaus at fractional densities. 
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Usually, every particle in quantum theory is classified as either 
a boson—a particle joining any number of identical particles 
in a single-quantum state—or a fermion, characterized by 

the sole occupancy of its state. The exchange of two fermions leads 
due to the Pauli principle to a phase factor  − 1 in the total wave-
function, whereas the wavefunction of two bosons remains invari-
ant under particle exchange. More than 30 years ago, researchers 
proposed a third fundamental category of particles living in two-
dimensional systems, ‘anyons’1–5. For two anyons, the wavefunction 
acquires a fractional phase eiθ under particle exchange, giving rise 
to fractional statistics, with 0 < θ < π. For a few years, the physics of 
anyons remained restricted to the two-dimensional world6, until 
Haldane presented the concept of fractional statistics in arbitrary 
dimensions7.

Anyons in one-dimension (1D) are still unexplored to a wide 
extent. Recently, it has been put forward to create fractional statis-
tics in a 1D Hubbard model of fermions with correlated hopping 
processes8. Anyons are realized in this case as low-energy elemen-
tary excitations.

Here, we introduce an exact mapping between anyons and bos-
ons in 1D. We show that a Hubbard model of anyons is equivalent 
to a variant of the Bose–Hubbard model9 in which the bosonic 
hopping amplitudes are state-dependent. This conditional-hop-
ping phase factor breaks reflection parity in the system, which is an 
important ingredient to realize fractional statistics10. We propose to 
realize bosons with conditional-hopping amplitudes using assisted 
Raman tunnelling in an optical lattice (OL)11,12. We discuss how the 
direct control of the statistical phase can induce a quantum phase 
transition from a bosonic superfluid into a Mott-like state, exhibit-
ing exotic Mott shells at fractional densities. The ‘statistical ramp’ 
transmutes bosons smoothly into ‘pseudofermions’, with anyons as 
intermediate steps.

Anyons in 1D are defined13,14 by the generalized commutation 
relations 

a a a a a a a aj k
j k

k j jk j k
j k

k j
† †− = =− − −e ei iq qdsgn( ) sgn( ), ,

where the operators aj
†, aj create or annihilate an anyon on site j. The 

sign function is such that sgn(j − k) = 0 for j = k, hence, two particles 
on the same site behave as ordinary bosons. In consequence, anyons 
with statistics θ = π are pseudofermions: although being bosons on-
site, they are fermions off-site.

Results
Mapping between anyons and bosons. We introduce an exact 
mapping between anyons and bosons in 1D. Let us define the 
fractional version of a Jordan–Wigner transformation, 
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with n a a b bi i i i i= =† †  the number operator for both particle types. 
Provided that the particles of type b are bosons, [ , ]=b bj i ji

† d  and 
[bj, bi] = 0 we can show that the mapped operators a indeed obey the 
anyonic commutation relations as introduced in equation (1). For a 
proof see Methods. This mapping elucidates that anyons in 1D are 
indeed non-local quasi-particles, made of bosons with an attached 
string operator.

Our ultimate goal is to propose a realistic setup for demonstrat-
ing an interacting gas of anyons in 1D OLs. We therefore introduce 
the Anyon–Hubbard model 
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where J is the tunnelling amplitude connecting two neighbour-
ing sites and U is the on-site interaction energy. By inserting the 
Anyon–Boson mapping, equation (2), the Hamiltonian Ha can be 
rewritten in terms of bosonic operators: 

H J b b h c U n nb
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The mapped, bosonic Hamiltonian thus describes bosons with a 
occupation-dependent amplitude J njeiq  for hopping processes from 
right to left (j + 1→j). If the target site j is unoccupied, the hopping 
amplitude is simply J. If it is occupied by one boson, the amplitude 
reads Jeiq , and so on. The conditional-hopping scheme is depicted 
in Figure 1a. We emphasize that the non-local mapping between 
anyons and bosons, equation (2), leads luckily to a purely local, and 
thus viable Hamiltonian.

As expected from anyons, the reflection parity symmetry is bro-
ken10 at the level of the commutation relations, equation (1). The 
fractional Jordan–Wigner transformation, equation (2), transfers 
this asymmetry also to the bosonic case: The resulting Hamiltonian, 
equation (4), features a phase factor acting only on the left site j and 
thus violates parity. Even in the absence of the on-site interaction, 
U = 0, the exponential operator in equation (4) gives rise to many-
body interactions, as expected for anyons10.

In the limit U/J→, bosons are impenetrable and each site con-
tains at most one particle. In this case, the phase factor disappears 
and the bosonic Hamiltonian Hb reduces to an ordinary Tonks–Gir-
ardeau gas15–18. However, we consider local occupation numbers 
beyond the hard-core limit, nj > 1. Thus, anyons can exchange posi-
tions, changing the phase of the total wavefunction, and show non-
trivial features.

Experimental realization. In our experimental proposal, the key 
point for realizing anyonic statistics is to induce a hopping term 
with a phase shift, which depends on the occupation of the left-
hand site j, Figure 1b displays the basic concept. To distinguish 
between different local occupational states, we require a non-zero 
on-site interaction U. For simplicity, let us consider lattice site occu-
pations that are restricted to nj = 0, 1, 2 (higher local truncations 
are also possible; Methods). The occupation-dependent tunnelling 
and thus the conditional-hopping model equation (4) can be imple-
mented in OLs with present experimental techniques. We propose 
to employ an assisted tunnelling scheme, based on ideas by Jaksch 
and Zoller19 and Juzeliunas et al.20. The OL is tilted, with an energy 
offset ∆ between neighbouring sites, this additional field gradient 
breaks reflection parity. Two different occupational states (note that 
the occupational state nj = 0 is not relevant) in either of the two sites 
form in total a four-dimensional atomic ground state manifold, 
which we propose to couple to an excited state |e〉 via four external 
driving fields (labelled 1, 2, 3 and 4 in Fig. 1b). According to this 
notation, singly and doubly occupied states are coupled by fields 2 
and 1 in the left site and by 3 and 4 in the right site, respectively. The 
excited state can be experimentally realized in at least two alterna-
tive ways.

First, two spin-dependent lattices21–23 can be used. In the case  
of Rb87, one lattice for example traps atoms in the F = 1, mF =  − 1 
hyperfine state, assigned to the ground state manifold. The excited 
state |e〉 can then be engineered as a vibrational state of a second  
lattice, trapping atoms in the F = 1, mF =  0 hyperfine state. Atoms 
in the excited state would then be localized between the left  
and right wells of the F = 1, mF =  − 1 lattice, but not necessarily in 
their centre.

This implementation would offer the advantage of external driv-
ing fields in the radio-frequency regime. Such frequencies could 
then still resolve22 the typical energies U and ∆ (both of the order 

(4)(4)
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of a few kHz), which is necessary to selectively couple to the four 
different states in the ground state manifold.

Second, one can use two optical lattices, and trap ground state 
manifold atoms in the red-detuned lattice, while the excited state 
would live in the blue-detuned one. The driving fields necessary in 
this case would be then, however, typically in the THz frequency 
range, making a precise resolution of U and ∆ more challeng-
ing for the experimentalist: in principle, a laser with a linewidth 
δlinewidth  U, ∆ would be needed.

The effective tunnelling rates Jab (a∈{1, 2}, b∈{3, 4}) are calcu-
lated for four -systems, laser frequencies ωi, and Rabi frequen-
cies Ωi (i∈{1, 2, 3, 4}) via adiabatic elimination, see Methods. We 
emphasize that the tilt energy ∆ disappears in the effective Hamil-
tonian after rotating out time-dependent phase factors: indeed this 
energy offset is absorbed (or released) by the external radiation field, 
yielding a total Hamiltonian without a tilt term (see also Jaksch and 
Zoller19 on this issue).

The following conditions on the effective tunnelling rates Jab have 
to be satisfied in order to realize our model in equation (4): 

J J J23 24= ≡ ,

 J J J13 14= ,≡ eiq
(5)(5)

(6)(6)

where θ is the anyonic exchange phase. For a more detailed consid-
eration of realistic energy scales and appropriate parameter regimes, 
see Methods.

Density in quasi-momentum space. We have computed the 
ground state wave function for the conditional-hopping Bose–Hub-
bard model, equation (4), using the Density Matrix Renormaliza-
tion Group (DMRG)24,25. In Figure 2, we plot the quasi-momentum 
distribution 

〈 〉 〈 〉∑ −n
L

b bk
ij

k xi x j
i j= 1 ( )ei †

as a function of the statistical phase angle θ. The case θ = 0 corre-
sponds to ordinary bosons, which for the parameters chosen quasi-
condense. The density distribution in quasi-momentum space,  
equation (7), is thus peaked at k = 0. Increasing θ to non-zero val-
ues, we find that the position of the peaks θmax (k) is shifted as a 
nonlinear function of k. Indeed, for fillings N/L > 1 one finds a quad-
ratic behaviour θmax (k) = α(k − k0)2 + β. For fillings close to N/L = 1, 
β→π, k0→π and α→ − 1/π. For higher fillings N/L →2, these fitting  
parameters are altered, however, the characteristic quadratic 
dependence is conserved.

In this analysis, we find two important characteristics of con-
ditional-hopping bosons and thus anyons in 1D. The quadratic 
dependence of θmax on k contrasts ordinary magnetic fields (with 
a constant phase factor eiθ in the kinetic Hamiltonian). In this case, 
the shift of the peaks depends linearly on the phase angle θ. In the 
anyonic case, however, the growth of correlations with increasing 
θ may induce the characteristic quadratic trace, which could be 
directly observed in OL experiments using standard time-of-flight 
imaging.

An even more important observation is that the contrast of the 
peaks (and the phase coherence) decays with increasing θ. The peak 
values 〈nk(θ = θmax)〉 are plotted in the inset of Figure 2, in the pseud-
ofermionic limit (θ→π) the peak is almost washed out. This suggests 
that an increase of θ transforms the initial quasi-condensate into a 
quantum state where all phase coherence is lost. It will become evi-
dent in the subsequent paragraphs that this quantum state will turn 
out to be a Mott-like state, with Mott plateaus emerging at fractional 
densities. We emphasize that this quantum phase transition is only 
driven by the statistical angle θ, all other parameters such as J/U 
are fixed. The loss of coherence can be understood as follows. With 

(7)(7)
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Figure 1 | Anyon–Boson mapping and schematic of the proposed 
experiment. (a) Anyons in 1D can be mapped onto bosons featuring 
occupation-dependent hopping amplitudes. (b) Assisted Raman 
tunnelling can selectively address hopping processes connecting different 
occupational states and induce a relative phase, realizing a fully tuneable 
particle exchange statistics angle θ. Energies are not in scale. 
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Figure 2 | Density distribution in quasi-momentum space 〈nk〉 as a 
function of particle statistics θ. The shift of the density peaks with 
increasing θ displays a characteristic quadratic behaviour. The fit to the 
trace of density maxima is depicted in white and yields fitting parameters 
k0 = 0.9828π, α =  − 1.0511/π, β = 0.9982π. The inset displays the decrease 
of the peak occupations with θ (yellow circles) and indicates the 
statistically induced phase transition from a superfluid to a Mott-like state. 
Parameters: L = 30, N = 31, U/J = 0.2. 
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increasing θ the occupation-dependent phase factor in equation (4) 
becomes more and more important: hopping processes connect-
ing sites with different occupations will contribute different phases 
and will cancel out in the kinetic Hamiltonian due to incoherent 
superpositions. This destructive interference effect is amplified by 
an increasing θ and induces the localization of particles, yielding 
an insulating phase. We emphasize that the present analysis of the 
density distribution in momentum space refers to the bosonic par-
ticles only, 〈nk〉 = 〈bk

†bk〉. Namely, Figure 2 represents what would 
be observed in the experiment. However, although the mapping in 
equation (2) establishes a 1–1 correspondence between the number 
operators in real space, 〈 〉 〈 〉a a b bj j j j

† †= , the density distributions 
in momentum space may differ significantly. In this sense, a study 
of n a ak k k= 〈 〉†  and the superfluid order parameter in the original 
anyonic model (3) would be very interesting, but it is beyond the 
scope of this paper. A study of density distributions in momentum 
and real space was recently presented for the particular case of  
hard-core anyons26.

Phase diagram. Next, we present the phase diagram for condi-
tional-hopping bosons in the (µ/U, J/U)-plane. Just as in the case 
of ordinary bosons (θ = 0)—the celebrated phase diagram of the 
Bose–Hubbard model9—the anyonic version will display insulating 
and superfluid regions. However, we find that the size of the insulat-
ing regions (Mott lobes) grows with increasing statistical angle θ—a 
fact that will be central in our proposal to design phase transitions 
by tuning the particle statistics.

The phase diagram is calculated as follows. We start with a 
unit filling ground state |N = L〉 and compare the energies with the 
ground states of |N = L ± 1〉. This yields the gap energies ∆E ± (L), cor-
responding to the energy required to add or subtract one particle, 
respectively. These gap energies were calculated using DMRG for 
system sizes L = 15, 30, 60, 90 and 120. From the finite-size scal-
ing, we extrapolate the infinite-size values ∆E ± , which are plotted 
in Figure 3 in the (µ/U, J/U)-plane. Note that a Mott insulator is 
associated with a non-zero gap ε = ∆E +  − ∆E − , while for the super-
fluid phase ε = 0 in the thermodynamic limit. For the bosonic case 
θ = 0, we recover the first Mott lobe as in the work by Kühner and  
Monien27. Turning on the statistical angle and transmuting the bos-
ons into anyons, we observe an expansion of the Mott-like insulating 
phase in both dimensions µ/U and J/U. The phase transition points 
(J/U)crit (defined by the cusps of the Mott lobes) are plotted in the 
inset of Figure 3 as a function of θ. In the pseudofermion limit θ→π,  
the Mott-like phase seems to extend to very large values of J/U. 
In contrast, ordinary bosons would form a superfluid state in this 
parameter regime. The expansion of the Mott lobes with θ is also 
observed in mean-field (MF) calculations for our model, equation 
(4). The MF solution produces very interesting patterns for the tran-
sition lines, as shown in Figure 5. For details of this calculation, see 
Methods.

We note that the phase diagrams for conditional-hopping bosons 
and for anyons are the same. Owing to the unitarity of the mapping 
(2), the two models (3) and (4) are isospectral, and thus feature the 
same energy gaps and phase diagrams.

Discussion
We envision the following procedure to demonstrate the first statis-
tically induced phase transition: We fix the parameters at J/U = 0.5, 
N/L = 1 and µ0. We start with a phase detuning θ = 0 between 
the external driving fields (Methods), and thus realize a superfluid 
bosonic gas as the ground state. The phase angle θ is now continu-
ously increased, leading to anyonization of the gas and growth  
of the Mott-like phase. At a critical value θc the phase border will  
surpass the fixed point in parameter space, which will be then 
located inside the Mott phase. The critical angle can be estimated 
from the phase diagram to be in the range θc∈[π/2, 3π/4]. For laser 

detunings beyond this critical angle, θ > θc, the gas will be in an 
insulating Mott-like state. In this way, the variation of the particle 
statistics in our proposal directly realizes a novel superfluid-to-Mott 
quantum phase transition.

An intriguing aspect of the Mott-like state emerges 
when a harmonic trapping potential is added to the system, 
H H V L i ntr

b b
i i= (( 1)/2 )2+ + −Σ . This simulates the experimen-

tal conditions also to a more realistic extent. In a harmonic trap, 
ordinary Mott insulators form real-space density distributions 〈ni〉 
that resemble ‘wedding cakes’9. Because of the broken translational 
invariance (induced by the trap), the chemical potential in the local 
density approximation now is a function of the lattice sites. The dis-
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directions in the (µ/U, J/U)-plane. This demonstrates the novel possibility 
to induce a quantum phase transition from the superfluid into the 
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tribution 〈ni〉 thus exhibits plateaus at integer densities, for ordinary 
bosons in a Mott-insulating state.

We have computed the density distribution for a system with 
additional harmonic confinement, at the same fixed parameter 
point as in the procedure outlined above. The result is plotted in  
Figure 4. For low statistical phase angles θ (and thus a superfluid 
state), the density distribution displays a smooth, quadratic profile 
centred around the minimum of the trap. Beyond the critical phase 
angle, θ > θc, Mott-like plateaus appear in 〈ni〉. Surprisingly, in addi-
tion to the integer density Mott plateau at n = 1, a new plateau emerges 
at the fractional value n½. Fractional Mott plateaus persist also in 
other parameter regimes, when J/U and the trapping potential V are 
varied, and seem to form a universal feature of 1D anyonic gases at 
large exchange phases θ, which will be subject of a future study.

Recent progress on the experimental side have made direct 
imaging of density distributions possible, using ‘quantum gas 
microscopy’28,29. A few months ago, the plateau structure of the Mott 
insulator was directly observed for the first time30 at the single-atom 
level. This new technique opens up the possibility to directly dem-
onstrate fractional Mott plateaus and to image statistically induced 
phase transitions in situ.

In summary, we have shown how to realize fractional statistics 
in 1D optical lattices, using bosons in a realistic experimental envi-
ronment. The experiment we propose features the full control and 
tuneability of the particles’ exchange statistics—paving the way to 
the first statistically induced quantum phase transition.

Methods
Realizing conditional-hopping bosons. In this section we discuss how to real-
ize the conditional-hopping Hamiltonian equation (4), using four different and 
independent -transitions31. In general, we assume a deep optical lattice potential, 
giving rise to a negligible bare kinetic tunnelling amplitude Jkin. Let us focus for a 
moment on one -scheme, where two ground state levels |a〉 and |b〉 are coupled 
through a Raman process via an excited state |e〉. In our case, |a〉 and |b〉 cor-
respond to the wavefunctions of atoms at distance d localized in neighbouring sites 
of the tilted lattice V(x) (d being the lattice constant), while |e〉 experiences another 
potential V′(x) (for a brief discussion of two realistic experimental possibilites to 
realize V′(x), see the main text). The levels have energies Ei = ωi, i = a, b, e and 

the transition between a(b) and e is driven by an external radiation field with 
frequency ωe − ωa(b) − δ, with detuning δ. Note that in our scheme the energies Ei 
depend on ∆ and U. The Hamiltonian for the three-level -system reads 

H i i e a e b h c
i a b e

i a b= 〉〈 + 〉〈 + 〉〈 +
=
∑
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2
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w w d

a b a b
e

a b
e e a b tW( ) ( ) ( )

( ( ) )= Ω e i− − −
. Here, the quantity Ωa b

e
( ) is the Rabi 

frequency for the transition a(b)→e with the atom centred in the same position. 
However, as ground and excited states feel different lattices, the x components of 
the Wannier functions w(x) are slightly displaced. Thus, the off-diagonal elements 
in equation (8) contain the integrals19 
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e e
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where ka(b) is the x-component of the momentum of the driving radiation field, with 
modulus | |= ( )/( ) ( )ka b e a b cw w d− − . xa is the atom position in the left well, while 
xe refers to the position in the excited state. Note that the integrals in equation (9) are in 
general non-zero, as the two Wannier functions belong to different lattices. The quanti-
ties γa(b) are complex numbers, whose modulus and phase can be freely tuned by choosing 
the appropriate intensity, polarization and direction of the driving fields. For sufficiently 
large detunings δ > |γa(b)|, the level |e〉 can be adiabatically eliminated and in the rotating 
wave approximation the effective Hamiltonian in the subspace {|a〉, |b〉} reads 
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b a b
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where g  is the non-rotating version of γ, that is, without the time-dependent phase 
factors. In order to realize equation (4), we suggest to employ four driving fields 
(Fig. 1b) with different frequencies in order to avoid interferences. This situa-
tion would correspond to a maximum of two atoms per site. If the local density 
truncation were set to a higher number, more external driving fields would become 
necessary. As all fields can be tuned independently from each other, this poses no 
problems besides potential budgetary considerations.

The couplings J13, J14, J23 and J24, between the four different levels are then 
obtained in terms of the effective Rabi frequencies, Jab a b= /2* g g d .

Our aim is to satisfy the conditions set in equations (5) and (6) in order to 
engineer a state-dependent phase factor. This implies  g g q

2 1≡ ei , which can be 
achieved by the free tuneability of each driving fields’s frequency, intensity, polari-
zation and direction. Furthermore this choice of parameters implies | |=| | g ga b
, that is, the diagonal elements of the effective Hamiltonian are now equivalent. 
Thus, the tilt energy ∆ has vanished via adiabatic elimination, and consequently 
also does not appear in equation (4). Indeed, this offset energy between neighbour-
ing sites is compensated by the external radiation field. As the assisted tunnelling 
proposed in this article is the only mechanism for hopping in the lattice, unwanted 
effects such as Bloch oscillations do not appear in our system (the bare kinetic  
tunnelling amplitude Jkin is assumed to be negligible compared with all energy 
scales discussed here).

In summary, the parameters discussed here have to satisfy the following  
conditions.

First, δlinewidth  ∆, U, so that the external driving fields resolve the different levels 
of the ground state manifold. Second, large detunings δ > |γa(b)| are required for a 
short-lived excited state and the validity of the adiabatic elimination. Third, ∆ and U 
can be in the same frequency regime (a few kHz), but should not be identical (their 
difference should be   δlinewidth). As an example, ∆2 kHz, U3 kHz, |Jab| = J5 kHz 
and |γab|20 kHz would be sufficient if the linewidth of the radiation field were 
δlinewidth50 Hz, which is a realistic assumption for typical radio-frequency driving 
fields (see, for example, the works by Campbell et al.22 and McKay and DeMarco23).

Fractional Jordan–Wigner mapping. In the following we prove that anyons are 
isomorphic to bosons in 1D.

In particular, we prove that the operators a, as defined in the non-local map-
ping, equation (2), indeed obey the anyonic commutation relations of equation (1), 
provided that the particles of type b are bosons.

For the case i < j we wish to rewrite products of anyonic operators in terms of 
the bosonic ones: 
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Figure 5 | Mean-field solution for the Mott-superfluid transition. The 
transition lines are displayed for several values of θ. For comparison, we 
display also the data for the bosonic case θ = 0 (blue curve).
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Here we have defined f(θ)≡e iθsgn(i − j) and used that f(θ) = e − iθ, as i < j was assumed. 
We can now evaluate the left-hand side of equation (1): 

a a f a a b b b bi j j i
nki k j

i j
ni ni

j i
† † † †− =

∑
−

=

− < < − − +( ) ( )( )q
q q qe e e
i i i 1

ee e
i i− < < − +∑q qnki k j ni i jb b( )[ , ]1

= 0

†

Thus, the anyonic commutation relations have been proven for the case i < j. The 
proof for the case i > j is very similar. For the case i = j, one just has to note that 
a a b bi i i i
† †=  and f(θ) = 1. Note that the resulting conditional-hopping bosonic 

Hamiltonian, equation (4), resembles the exactly solvable model of q-bosons32. 
However, this model is not equivalent to our model.

Mean-field calculation. The conditional-hopping bosonic Hamiltonian is given by 
equation (4). In addition, we now include also a chemical potential term. Express-
ing energies in units of U (we fix U≡1), we have 

H n n n J c b b c
j

j j j j j j j= − − − +
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
∑ + +

1
2

1 1 1( ) ( )m † †

where for convenience we have defined c bj
nj

j=
−
e

iq
.

In absence of hopping J = 0, all the sites are independent and the ground state is 
of the Gutzwiller type 
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where ν = N/L is the filling factor. The local energies are εν = ½ν (ν − 1) − µν, while 
the local gaps for adding or subtracting one boson are, respectively 

e n e n n m e n e n n m( ) ( ) , ( ) ( ) ( ) .+ − = − − − = − − +1 1 1
  

So, the ground state in every site has ν particles in the interval m m mn n
− +< <( ) ( ) ,  

with m nn
− = −( ) 1 and m nn

+ =( ) . The gap in the whole system at a given number of 
particles is given by ∆ = 1, obtained by removing an atom at some site an putting it 
in another one already occupied.

Here the MF is obtained by decoupling the hopping term as 
c b b cj j j j
† †

+ +≈ − + +1 2 1 2 1 1a a a a* * , where the order parameters are α1 = 〈bj〉  

and α2 = 〈cj〉. Accordingly, the Hamiltonian (13) in MF becomes 

H H LJ
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The two parameters α1 and α2 are not completely independent as as they are both 
vanishing or non vanishing at the same time. Of course there is a trivial solution 
corresponding to αl = 0, l = 1, 2, which corresponds to the Mott-insulating phase. 
The occurrence of α  ≠ 0 signals the instability towards superfluid correlations. On 
inhomogeneous lattices, a further situation can in principle occur, where α l≠ 0 only 
on a fraction of the lattice sites. The self-consistent relation defines a map αl = ll′αl′ , 
obtained by linearizing about the solution αl = 0. The instability of the trivial solution 
sets in when the maximal eigenvalue of  is  > 1. Close to the trivial point, it holds 
|αl|  1, hence, the kinetic term can be treated perturbatively. Up to first perturba-
tive order, the wavefunction can be written as |ψ〉 = |ψ(0)〉 + |ψ(1)〉, where |ψ(0)〉 = |ν〉 and 
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Hence, using the self-consistency relations α1=〈ψ|bj|ψ〉 and α2=〈ψ|cj|ψ〉, 
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The matrix  is then 
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−
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,

since every lobe is labelled by ν = [µ] + 1. The eigenvalues of  are given by 

l q q q q± = + − ± + − −





J f f A f f
2

4 2 2( ) ( ) ( ( ) ( )) .

The condition max{λ + ,λ − } = 1 signals the onset of instability of the trivial solution 
and hence establishes the critical coupling Jcrit along the Mott-superfluid transition 
line. In Figure 5, the phase diagrams for several values of θ are shown. The Mott 
lobes expand for non-zero statistical angles θ, a fact central for designing statisti-
cally induced phase transitions. 
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