Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Solar geoengineering reduces atmospheric carbon burden

Solar geoengineering is no substitute for cutting emissions, but could nevertheless help reduce the atmospheric carbon burden. In the extreme, if solar geoengineering were used to hold radiative forcing constant under RCP8.5, the carbon burden may be reduced by 100 GTC, equivalent to 12–26% of twenty-first-century emissions at a cost of under US$0.5 per tCO2.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

References

  1. National Research Council. Climate Intervention: Reflecting Sunlight to Cool Earth (National Academies Press, 2015).

  2. If all else fails. The Economist (26 November 2015).

  3. Robock, A. Bull. At. Sci. 64, 14–18 (2008).

    Article  Google Scholar 

  4. Keller, D. P., Feng, E. Y. & Oschlies, A. Nat. Commun. 5, 3304 (2014).

    Article  Google Scholar 

  5. Tjiputra, J. F., Grini, A. & Lee, H. J. Geophys. Res. Biogeosci. 121, 2–27 (2016).

    Article  CAS  Google Scholar 

  6. Schuur, E. A. G. et al. Nature 520, 171–179 (2015).

    Article  CAS  Google Scholar 

  7. Hunter, S. J., Goldobin, D. S., Haywood, A. M., Ridgwell, A. & Rees, J. G. Earth Planet. Sci. Lett. 367, 105–115 (2013).

    Article  CAS  Google Scholar 

  8. Xia, L., Robock, A., Tilmes, S. & Neely, R. R. III Atmos. Chem. Phys. 16, 1479–1489 (2016).

    Article  CAS  Google Scholar 

  9. National Research Council. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Academies Press, 2015).

  10. Keith, D. W. & Irvine, P. J. Earth's Future 4, 549–559 (2016).

    Article  Google Scholar 

  11. Friedlingstein, P. et al. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  12. Egleston, E. S., Sabine, C. L. & Morel, F. M. M. Glob. Biogeochem. Cycles 24, GB1002 (2010).

    Article  Google Scholar 

  13. Isaac, M. & van Vuuren, D. P. Energy Policy 37, 507–521 (2009).

    Article  Google Scholar 

  14. Pierce, J. R., Weisenstein, D. K., Heckendorn, P., Peter, T. & Keith, D. W. Geophys. Res. Lett. 37, L18805 (2010).

    Article  Google Scholar 

  15. McClellan, J., Keith, D. W. & Apt, J. Environ. Res. Lett. 7, 034019 (2012).

    Article  Google Scholar 

  16. Our Changing Planet: the US Global Change Research Program for Fiscal Year 2017 (USGCRP, 2016).

  17. Riahi, K. et al. Climatic Change 109, 33 (2011).

    Article  CAS  Google Scholar 

  18. Burns, E. T. et al. Earth's Future 4, 536–542 (2016).

    Article  Google Scholar 

  19. Lawrence, M. G. & Crutzen, P. J. Earth's Future 5, 136–143 (2017).

    Article  Google Scholar 

  20. Lenton, A. et al. Geophys. Res. Lett. 36, L12606 (2009).

    Article  Google Scholar 

  21. Weisenstein, D. K., Keith, D. W. & Dykema, J. A. Atmos. Chem. Phys. 15, 11835–11859 (2015).

    Article  CAS  Google Scholar 

  22. Keith, D. W., Weisenstein, D. K., Dykema, J. A. & Keutsch, F. N. Proc. Natl Acad. Sci. USA 113, 14910–14914 (2016).

    Article  CAS  Google Scholar 

  23. Muri, H., Niemeier, U. & Kristjánsson, J. E. Geophys. Res. Lett. 42, 2951–2960 (2015).

    Article  Google Scholar 

  24. Partanen, A.-I., Keller, D. P., Korhonen, H. & Matthews, H. D. Geophys. Res. Lett. 43, 7600–7608 (2016).

    Article  CAS  Google Scholar 

  25. Jones, C. et al. J. Clim. 26, 4398–4413 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank K. Caldeira for discussion and feedback.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Keith.

Ethics declarations

Competing interests

C.L.Z. began work on this analysis while a researcher at Harvard. She now works for the Open Philanthropy Project, which subsequently became a funder of Harvard's Solar Geoengineering Research Project, co-directed by D.W.K. and G.W.

Supplementary information

Supplementary Information

Solar geoengineering reduces atmospheric carbon burden

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keith, D., Wagner, G. & Zabel, C. Solar geoengineering reduces atmospheric carbon burden. Nature Clim Change 7, 617–619 (2017). https://doi.org/10.1038/nclimate3376

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3376

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing