Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term warming amplifies shifts in the carbon cycle of experimental ponds

Subjects

Abstract

Lakes and ponds cover only about 4% of the Earth’s non-glaciated surface1, yet they represent disproportionately large sources of methane and carbon dioxide2,3,4. Indeed, very small ponds (for example, <0.001 km2) may account for approximately 40% of all CH4 emissions from inland waters5. Understanding how greenhouse gas emissions from aquatic ecosystems will respond to global warming is therefore vital for forecasting biosphere–carbon cycle feedbacks. Here, we present findings on the long-term effects of warming on the fluxes of GHGs and rates of ecosystem metabolism in experimental ponds. We show that shifts in CH4 and CO2 fluxes, and rates of gross primary production and ecosystem respiration, observed in the first year became amplified over seven years of warming. The capacity to absorb CO2 was nearly halved after seven years of warmer conditions. The phenology of greenhouse gas fluxes was also altered, with CO2 drawdown and CH4 emissions peaking one month earlier in the warmed treatments. These findings show that warming can fundamentally alter the carbon balance of small ponds over a number of years, reducing their capacity to sequester CO2 and increasing emissions of CH4; such positive feedbacks could ultimately accelerate climate change.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term experimental warming amplifies shifts in CH4 emissions.
Figure 2: Long-term experimental warming amplifies shifts in ecosystem metabolism.
Figure 3: Experimental warming alters the phenology and annual budget of net CO2 flux.

Similar content being viewed by others

References

  1. Verpoorter, C., Kutser, T., Seekell, D. A. & Tranvik, L. J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 41, 6396–6402 (2014).

    Article  Google Scholar 

  2. Bastviken, D., Tranvik, L. J., Downing, J. A., Crill, P. M. & Enrich-Prast, A. Freshwater methane emissions offset the continental carbon sink. Science 331, 50 (2011).

    Article  CAS  Google Scholar 

  3. Cole, J. J. et al. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10, 171–184 (2007).

    Article  CAS  Google Scholar 

  4. Wik, M., Varner, R. K., Anthony, K. W., MacIntyre, S. & Bastviken, D. Climate-sensitive northern lakes and ponds are critical components of methane release. Nat. Geosci. 9, 99–106 (2016).

    Article  CAS  Google Scholar 

  5. Holgerson, M. A. & Raymond, P. A. Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat. Geosci. 9, 222–226 (2016).

    Article  CAS  Google Scholar 

  6. Yvon-Durocher, G. et al. Reconciling the temperature dependence of respiration across timescales and ecosystem types. Nature 487, 472–476 (2012).

    Article  CAS  Google Scholar 

  7. Yvon-Durocher, G. et al. Methane fluxes show consistent temperature dependence across microbial to ecosystem scales. Nature 507, 488–491 (2014).

    Article  CAS  Google Scholar 

  8. Allen, A. P., Gillooly, J. F. & Brown, J. H. Linking the global carbon cycle to individual metabolism. Funct. Ecol. 19, 202–213 (2005).

    Article  Google Scholar 

  9. Marotta, H. et al. Greenhouse gas production in low-latitude lake sediments responds strongly to warming. Nat. Clim. Change 4, 467–470 (2014).

    Article  CAS  Google Scholar 

  10. Yvon-Durocher, G., Jones, J. I., Trimmer, M., Woodward, G. & Montoya, J. M. Warming alters the metabolic balance of ecosystems. Phil. Trans. R. Soc. B 365, 2117–2126 (2010).

    Article  Google Scholar 

  11. Yvon-Durocher, G., Montoya, J. M., Woodward, G., Jones, J. I. & Trimmer, M. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Glob. Change Biol. 17, 1225–1234 (2011).

    Article  Google Scholar 

  12. Atwood, T. B. et al. Warming alters food web-driven changes in the CO2 flux of experimental pond ecosystems. Biol. Lett. 11, 20150785 (2015).

    Article  CAS  Google Scholar 

  13. Davidson, T. A. et al. Eutrophication effects on greenhouse gas fluxes from shallow-lake mesocosms override those of climate warming. Glob. Change Biol. 21, 4449–4463 (2015).

    Article  Google Scholar 

  14. Liboriussen, L. et al. Effects of warming and nutrients on sediment community respiration in shallow lakes: an outdoor mesocosm experiment. Freshwater Biol. 56, 437–447 (2010).

    Article  Google Scholar 

  15. Melillo, J. M. Soil warming and carbon-cycle feedbacks to the climate system. Science 298, 2173–2176 (2002).

    Article  CAS  Google Scholar 

  16. Luo, Y., Wan, S., Hui, D. & Wallace, L. Acclimatization of soil respiration to warming in a tall grass prairie. Nature 413, 622–625 (2001).

    Article  CAS  Google Scholar 

  17. Luo, Y. Terrestrial carbon-cycle feedback to climate warming. Annu. Rev. Ecol. Evol. Syst. 38, 683–712 (2007).

    Article  Google Scholar 

  18. Bradford, M. A., Watts, B. W. & Davies, C. A. Thermal adaptation of heterotrophic soil respiration in laboratory microcosms. Glob. Change Biol. 16, 1576–1588 (2010).

    Article  Google Scholar 

  19. Karhu, K. et al. Temperature sensitivity of soil respiration rates enhanced by microbial community response. Nature 513, 81–84 (2014).

    Article  CAS  Google Scholar 

  20. Odum, E. P. The strategy of ecosystem development. Science 164, 262–270 (1969).

    Article  CAS  Google Scholar 

  21. Yvon-Durocher, G. et al. Five years of experimental warming increases the biodiversity and productivity of phytoplankton. PLoS Biol. http://dx.doi.org/10.1371/journal.pbio.1002324 (2015).

  22. Anderson-Teixeira, K. J., Vitousek, P. M. & Brown, J. H. Amplified temperature dependence in ecosystems developing on the lava flows of Mauna Loa, Hawai’i. Proc. Natl Acad. Sci. USA 105, 228–233 (2008).

    Article  CAS  Google Scholar 

  23. Levin, S. A. Ecosystems and the biosphere as complex adaptive systems. Ecosystems 1, 431–436 (1998).

    Article  Google Scholar 

  24. Whiting, G. J. & Chanton, J. P. Primary production control of methane emission from wetlands. Nature 364, 794–795 (1993).

    Article  CAS  Google Scholar 

  25. Tranvik, L. J. et al. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol. Oceangr. 54, 2298–2314 (2009).

    Article  CAS  Google Scholar 

  26. Dean, W. E. The carbon cycle and biogeochemical dynamics in lake sediments. J. Paeleolimnol. 21, 375–393 (1999).

    Article  Google Scholar 

  27. Likens, G. E. Primary Productivity of the Biosphere Vol. 14, 185–202 (Springer, 1975).

    Book  Google Scholar 

  28. Kankaala, P., Huotari, J., Tulonen, T. & Ojala, A. Lake-size dependent physical forcing drives carbon dioxide and methane effluxes from lakes in a boreal landscape. Limnol. Oceangr. 58, 1915–1930 (2013).

    Article  CAS  Google Scholar 

  29. Bastviken, D., Cole, J., Pace, M. & Tranvik, L. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob. Biogeochem. Cycles 18, GB4009 (2004).

    Article  Google Scholar 

  30. Dossena, M. et al. Warming alters community size structure and ecosystem functioning. Proc. R. Soc. B 279, 3011–3019 (2012).

    Article  Google Scholar 

  31. Bastviken, D., Ejlertsson, J. & Tranvik, L. Measurement of methane oxidation in lakes: a comparison of methods. Environ. Sci. Technol. 36, 3354–3361 (2002).

    Article  CAS  Google Scholar 

  32. Sanders, I. A. et al. Emission of methane from chalk streams has potential implications for agricultural practices. Freshwater Biol. 52, 1176–1186 (2007).

    Article  CAS  Google Scholar 

  33. Wilhelm, E., Battino, R. & Wilcock, R. J. Low-pressure solubility of gases in liquid water. Chem. Rev. 77, 219–262 (1977).

    Article  CAS  Google Scholar 

  34. Staehr, P. A. et al. Lake metabolism and the diel oxygen technique: state of the science. Limnol. Oceanogr. Methods 8, 628–644 (2010).

    Article  CAS  Google Scholar 

  35. Hedges, J. I. & Stern, J. H. Carbon and nitrogen determinations of carbonate-containing solids. Limnol. Oceangr. 29, 657–663 (1984).

    Article  CAS  Google Scholar 

  36. Zuur, A., Ieno, E., Walker, N. & Saveliev, A. Mixed Effects Models and Extensions in Ecology with R (Springer, 2009).

    Book  Google Scholar 

Download references

Acknowledgements

This study was supported by a grant from the Natural Environment Research Council of the UK (NE/H022511/1) awarded to M.T., G.Y.-D. and G.W.

Author information

Authors and Affiliations

Authors

Contributions

M.T. and G.Y.-D. conceived the study. C.J.H. and G.Y.-D. conducted the experiments. G.Y.-D., C.J.H. and M.T. analysed the data. G.Y.-D. wrote the manuscript and all authors contributed to revisions.

Corresponding authors

Correspondence to Gabriel Yvon-Durocher or Mark Trimmer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2264 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yvon-Durocher, G., Hulatt, C., Woodward, G. et al. Long-term warming amplifies shifts in the carbon cycle of experimental ponds. Nature Clim Change 7, 209–213 (2017). https://doi.org/10.1038/nclimate3229

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3229

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology