Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Impacts of changing rainfall regime on the demography of tropical birds

Subjects

Abstract

Biodiversity in tropical regions is particularly high and may be highly sensitive to climate change1,2. Unfortunately, a lack of long-term data hampers understanding of how tropical species, especially animals, may react to projected environmental changes. The amount and timing of rainfall is key to the function of tropical ecosystems and, although specific model predictions differ3,4, there is general agreement that rainfall regimes will change over large areas of the tropics5,6. Here, we estimate associations between dry season length (DSL) and the population biology of 20 bird species sampled in central Panama over a 33-year period. Longer dry seasons decreased the population growth rates and viability of nearly one-third of the species sampled. Simulations with modest increases in DSL suggest that consistently longer dry seasons will change the structure of tropical bird communities. Such change may occur even without direct loss of habitat—a finding with fundamental implications for conservation planning. Systematic changes in rainfall regime may threaten some populations and communities of tropical animals even in large tracts of protected habitat. These findings suggest the need for collaboration between climate scientists and conservation biologists to identify areas where rainfall regimes will be able to plausibly maintain wildlife populations.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Patterns of temporal variation in demographic parameters from 1977 through 2011 for species representing each of four species groups based on general foraging behaviour and diet.
Figure 2: Length of dry season (DSL) in central Panama (1977–2011).
Figure 3: Estimated regression (beta) coefficients characterizing associations between length of previous dry season and estimated demographic parameters.
Figure 4: Results of stochastic simulations depicting changes in relative abundances (percentage of total) of 20 species over 25 and 50 years subsequent to 10% increase in length of dry season.

Similar content being viewed by others

References

  1. Wormworth, J. & Sekercioglu, C. H. Winged Sentinels: Birds and Climate Change (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  2. Janzen, D. H. Why are mountain passes higher in the tropics? Am. Nat. 101, 233–249 (1967).

    Article  Google Scholar 

  3. Chadwick, R., Good, P., Martin, G. & Rowell, D. P. Large rainfall changes consistently projected over substantial areas of tropical land. Nat. Clim. Change 6, 177–181 (2016).

    Article  Google Scholar 

  4. Kent, C., Chadwick, R. & Rowell, D. P. Understanding uncertainties in future projections of seasonal tropical precipitation. J. Clim. 28, 4390–4413 (2015).

    Article  Google Scholar 

  5. Feng, X., Porporato, A. & Rodriguez-Iturbe, I. Changes in rainfall seasonality in the tropics. Nat. Clim. Change 3, 811–815 (2013).

    Article  Google Scholar 

  6. Fu, R. Global warming-accelerated drying in the tropics. Proc. Natl Acad. Sci. USA 112, 3593–3594 (2015).

    CAS  Google Scholar 

  7. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecology Evol. Systematics 37, 637–669 (2006).

    Article  Google Scholar 

  8. Norberg, J., Urban, M. C., Vellend, M., Klausmeier, C. A. & Loeuille, N. Eco-evolutionary responses of biodiversity to climate change. Nat. Clim. Change 2, 747–751 (2012).

    Article  Google Scholar 

  9. Chan, W.-P. et al. Seasonal and daily climate variation have opposite effects on species elevational range size. Science 351, 1437–1439 (2016).

    Article  CAS  Google Scholar 

  10. Moritz, C. & Agudo, R. The future of species under climate change: resilience or decline? Science 341, 504–508 (2013).

    Article  CAS  Google Scholar 

  11. Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J. & Wang, G. Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr. Comp. Biol. 46, 5–17 (2006).

    Article  Google Scholar 

  12. Rosenzweig, C. et al. Attributing physical and biological impacts to anthropogenic climate change. Nature 453, 353–357 (2008).

    Article  CAS  Google Scholar 

  13. Bonebrake, T. C. Conservation implications of adaptation to tropical climates from a historical perspective. J. Biogeogr. 40, 409–414 (2013).

    Article  Google Scholar 

  14. Hilker, T. et al. Vegetation dynamics and rainfall sensitivity of the Amazon. Proc. Natl Acad. Sci. USA 111, 16041–16046 (2014).

    Article  CAS  Google Scholar 

  15. Phillips, O. L. et al. Drought sensitivity of the Amazon rainforest. Science 323, 1344–1347 (2009).

    Article  CAS  Google Scholar 

  16. Pearce-Higgins, J. W. et al. Geographical variation in species’ population responses to changes in temperature and precipitation. Proc. R. Soc. B http://dx.doi.org/10.1098/rspb.2015.1561 (2015).

  17. Bennett, J. M., Clarke, R. H., Horrocks, G. F. B., Thomson, J. R. & MacNally, R. Climate drying amplifies the effects of land-use change and interspecific interactions on birds. Landscape Ecol. 30, 2031–2043 (2015).

    Article  Google Scholar 

  18. Condit, R., Engelbrecht, B. M. J., Pino, D., Perez, R. & Turner, B. L. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA 110, 5064–5068 (2013).

    Article  CAS  Google Scholar 

  19. Meir, P. & Woodward, F. I. Amazonian rain forests and drought: response and vulnerability. New Phytol. 187, 553–557 (2010).

    Article  Google Scholar 

  20. Wright, S. J., Carrasco, C., Calderon, O. & Paton, S. The El Nino Southern Oscillation variable fruit production, and famine in a tropical forest. Ecology 80, 1632–1647 (1999).

    Google Scholar 

  21. Sekercioglu, C. H., Primack, R. B. & Wormworth, J. The effects of climate change on tropical birds. Biol. Cons. 148, 1–18 (2012).

    Article  Google Scholar 

  22. Mills, L. S. Conservation of Wildlife Populations: Demography, Genetics, and Management 2nd edn (Wiley-Blackwell, 2012).

    Google Scholar 

  23. Styrsky, J. N. & Brawn, J. D. Annual fecundity of a neotropical bird during years of high and low rainfall. Condor 113, 194–199 (2011).

    Article  Google Scholar 

  24. Sheldon, K. S., Yang, S. & Tewksbury, J. J. Climate change and community disassembly: impacts of warming on tropical and temperate montane community structure. Ecol. Lett. 14, 1191–1200 (2011).

    Article  Google Scholar 

  25. Lawrence, D. & Vandecar, K. Effects of tropical deforestation on climate and agriculture. Nat. Clim. Change 5, 27–36 (2015).

    Article  Google Scholar 

  26. Sodhi, N. S., Sekercioglu, C. H., Barlow, J. & Robinson, S. K. Conservation of Tropical Birds (John Wiley & Sons, 2011).

    Book  Google Scholar 

  27. Van Bael, S. A., Brawn, J. D. & Robinson, S. K. Birds defend trees from herbivores in a Neotropical forest canopy. Proc. Natl Acad. Sci. USA 100, 8304–8307 (2003).

    Article  CAS  Google Scholar 

  28. Baker, D. J., Hartley, A. J., Butchart, S. H. M. & Willis, S. G. Choice of baseline climate data impacts projected species’ responses to climate change. Glob. Change Biol. 22, 2392–2404 (2016).

    Article  Google Scholar 

  29. Fu, R. et al. Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proc. Natl Acad. Sci. USA 110, 18110–18115 (2013).

    Article  CAS  Google Scholar 

  30. Reside, A. E. et al. Characteristics of climate change refugia for Australian biodiversity. Aust. Ecol. 39, 887–897 (2014).

    Article  Google Scholar 

  31. Robinson, W. D., Brawn, J. D. & Robinson, S. K. Forest bird community structure in central Panama: influence of spatial scale and biogeography. Ecol. Monogr. 70, 209–235 (2000).

    Article  Google Scholar 

  32. Williams, B. K., Nichols, J. D. & Conroy, M. J. Analysis and Management of Animal Populations (Academic, 2002).

    Google Scholar 

  33. Pradel, R., Hines, J. E., Lebreton, J. D. & Nichols, J. D. Capture-recapture survival models taking account of transients. Biometrics 53, 60–72 (1997).

    Article  Google Scholar 

  34. Brawn, J. D., Karr, J. R., Nichols, J. D. & Robinson, W. D. Demography of tropical birds in Panama: how do transients affect estimates of survival rates? Proc. Int. Ornithol. Congr. 22, 297–305 (1999).

    Google Scholar 

  35. Choquet, R., Lebreton, J.-D., Gimenez, O., Reboulet, A.-M. & Pradel, R. U-CARE: utilities for performing goodness of fit tests and manipulating CApture-REcapture data. Ecography 32, 1071–1074 (2009).

    Article  Google Scholar 

  36. Pradel, R., Choquet, R., Lima, M., Merritt, J. & Crespin, L. Estimating population growth rate from capture-recapture data in presence of capture heterogeneity. J. Agric. Biol. Environ. Statist. 15, 248–258 (2010).

    Article  Google Scholar 

  37. Pledger, S., Pollock, K. H. & Norris, J. L. Open capture-recapture models with heterogeneity: I. Cormack-Jolly-Seber model. Biometrics 59, 786–794 (2003).

    Article  Google Scholar 

  38. White, G. C. & Burnham, K. P. Program MARK: survival estimation from populations of marked animals. Bird Study 46, 120–139 (1999).

    Article  Google Scholar 

  39. White, G. C., Burnham, K. P. & Barker, R. J. in Modeling Demographic Processes in Marked Populations (eds Thomson, D. L., Cooch, E. G. & Conroy, M. J.) 1119–1127 (Springer, 2009).

    Book  Google Scholar 

  40. Raftery, A. E. & Lewis, S. M. One long run with diagnostics: implementation strategies for Markov Chain Monte Carlo. Stat. Sci. 7, 493–497 (1992).

    Article  Google Scholar 

  41. Gelman, A. in Markov Chain Monto Carlo in Practice (eds Gilks, W. R., Richardson, S. & Spiegelhalter, D. J.) 131–143 (Chapman & Hall/CRC Interdisciplinary Statistics, 1996).

    Google Scholar 

  42. Plummer, M., Best, N., Cowles, K. & Vines, K. CODA: convergence diagnosis and output analysis for MCMC. R. News 6, 7–11 (2006).

    Google Scholar 

  43. R Core Team R: A Language and Environment for Statistical Computing. (2014); http://www.R-project.org

  44. Larkin, M. A. et al. Clustal W and clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  45. Vaidya, G., Lohman, D. J. & Meier, R. SequenceMatrix: concatenation software for the fast assembly of multi-gene datasets with character set and codon information. Cladistics 27, 171–180 (2011).

    Article  Google Scholar 

  46. Milne, I. et al. TOPALi v2: a rich graphical interface for evolutionary analyses of multiple alignments on HPC clusters and multi-core desktops. Bioinformatics 25, 126–127 (2009).

    Article  CAS  Google Scholar 

  47. Guindon, S. & Gascuel, O. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst. Biol. 52, 696–704 (2003).

    Article  Google Scholar 

  48. Stamatakis, A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22, 2688–2690 (2006).

    Article  CAS  Google Scholar 

  49. Silvestro, D. & Michalak, I. raxmlGUI: a graphical front-end for RAxML. Organ. Divers. Evol. 12, 335–337 (2012).

    Article  Google Scholar 

  50. Hackett, S. J. et al. A phylogenomic study of birds reveals their evolutionary history. Science 320, 1763–1768 (2008).

    Article  CAS  Google Scholar 

  51. Moyle, R. G. et al. Phylogeny and phylogenetic classification of the antbirds, ovenbirds, woodcreepers, and allies (Aves: Passeriformes: infraorder Furnariides). Cladistics 25, 386–405 (2009).

    Article  Google Scholar 

  52. Tello, J. G., Moyle, R. G., Marchese, D. J. & Cracraft, J. Phylogeny and phylogenetic classification of the tyrant flycatchers, cotingas, manakins, and their allies (Aves: Tyrannides). Cladistics 25, 429–467 (2009).

    Article  Google Scholar 

  53. Revell, L. J. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).

    Article  Google Scholar 

  54. Paradis, E. Analyses of Phylogenetics and Evolution with R (Springer, 2006).

    Book  Google Scholar 

  55. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-120 (2015).

  56. Boettiger, C., Coop, G. & Ralph, P. Is your phylogeny informative? Measuring the power of comparative methods. Evolution 66, 2240–2251 (2012).

    Article  Google Scholar 

  57. Pagel, M. Inferring the historical patterns of biological evolution. Nature 401, 877–884 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the Ministry of Environment (MiAmbiente, formerly ‘ANAM’) for permission to work in the Republic of Panama and The Smithsonian Tropical Research Institute (especially G. Angehr, S. Patton, R. Urriola and S. J. Wright) for logistical support and rainfall data. All procedures received approval from the University of Illinois’ Institutional Animal Care and Use Committee and the Smithsonian Institute. We thank J. R. Karr for data sharing, vision, and support. R. Ricklefs provided feedback. We acknowledge funding from the National Science Foundation (IBN-0212587), the US Department of Defense Legacy Resource Program, the US Department of Agriculture National Institute of Food and Agriculture (Accession #875-370), the University of Illinois, and the Environmental Science Program from the Smithsonian Tropical Research Institute.

Author information

Authors and Affiliations

Authors

Contributions

J.D.B. designed the project, conducted fieldwork, and contributed to the comparative analyses; C.E.T. conducted field sampling; T.J.B. contributed the demographic analyses and designed the simulations; M.S. and N.D.S. contributed the comparative analyses; J.D.B., T.J.B. and C.E.T. wrote the paper. All authors provided intellectual input, and read and approved the manuscript.

Corresponding author

Correspondence to Jeffrey D. Brawn.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 781 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brawn, J., Benson, T., Stager, M. et al. Impacts of changing rainfall regime on the demography of tropical birds. Nature Clim Change 7, 133–136 (2017). https://doi.org/10.1038/nclimate3183

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3183

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing