Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Climate goals and computing the future of clouds

How clouds respond to warming remains the greatest source of uncertainty in climate projections. Improved computational and observational tools can reduce this uncertainty. Here we discuss the need for research focusing on high-resolution atmosphere models and the representation of clouds and turbulence within them.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dependence of climate goals on equilibrium climate sensitivity (ECS) and of ECS on low-cloud feedback.
Figure 2: Evolution of horizontal resolution of climate models and maximum computer performance since 1979.
Figure 3: Grid cells in a global climate model and a large-eddy simulation of shallow cumulus clouds at 5 m resolution15.

References

  1. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  2. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  3. Riahi, K. et al. Climatic Change 109, 33–57 (2011).

    Article  CAS  Google Scholar 

  4. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2014).

  5. Seneviratne, S. I., Donat, M. G., Pitman, A. J., Knutti, R. & Wilby, R. L. Nature 529, 477–483 (2016).

    Article  CAS  Google Scholar 

  6. Charney, J. G. et al. Carbon Dioxide and Climate: A Scientific Assessment (National Academy of Sciences, 1979).

    Google Scholar 

  7. Bony, S. & Dufresne, J. L. Geophys. Res. Lett. 32, L20806 (2005).

    Article  Google Scholar 

  8. Bretherton, C. et al. A National Strategy for Advancing Climate Modeling (National Academies Press, 2012).

    Google Scholar 

  9. Brient, F. & Schneider, T. J. Climate 29, 5821–5835 (2016).

    Article  Google Scholar 

  10. Stevens, B. et al. Mon. Weather Rev. 133, 1443–1462 (2005).

    Article  Google Scholar 

  11. Myhre, G., Boucher, O., Bréon, F.-M., Forster, P. & Shindell, D. Nat. Geosci. 8, 181–185 (2015).

    Article  CAS  Google Scholar 

  12. Palmer, T. Nature 515, 338–339 (2014).

    Article  CAS  Google Scholar 

  13. Ban, N., Schmidli, J. & Schär, C. Geophys. Res. Lett. 42, 1165–1172 (2015).

    Article  Google Scholar 

  14. Ohno, T., Satoh, M. & Yamada, Y. J. Atmos. Sci. 73, 4289–4309 (2016).

    Article  Google Scholar 

  15. Pressel, K. G., Kaul, C. M., Schneider, T., Tan, Z. & Mishra, S. J. Adv. Model Earth Syst. 7, 1425–1456 (2015).

    Article  Google Scholar 

  16. Khairoutdinov, M. F., Krueger, S. K., Moeng, C.-H., Bogenschutz, P. A. & Randall, D. A. J. Adv. Model Earth Syst. 1, 15 (2009).

    Article  Google Scholar 

  17. van der Dussen, J. J. et al. J. Adv. Model. Earth Syst. 5, 483–499 (2013).

    Article  Google Scholar 

  18. Bretherton, C. S. Phil. Trans. R. Soc. A 373, 20140415 (2015).

    Article  Google Scholar 

  19. Grabowski, W. W. J. Meteor. Soc. Japan 94, 327–344 (2016).

    Article  Google Scholar 

  20. Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P. & Van Meijgaard, E. Bull. Amer. Meteor. Soc. 96, 715–723 (2015).

    Article  Google Scholar 

  21. Schalkwijk, J., Jonker, H. J. J., Siebesma, A. P. & Bosveld, F. C. Mon. Weather Rev. 143, 828–844 (2015).

    Article  Google Scholar 

  22. Heinze, R. et al. Quart. J. Roy. Meteor. Soc. http://doi.org/bvhx (2016).

  23. L'Ecuyer, T. S. et al. J. Climate 28, 8319–8346 (2015).

    Article  Google Scholar 

  24. Randall, D. A. Geophys. Res. Lett. 40, 5970–5976 (2013).

    Article  Google Scholar 

  25. Hope, C. Phil. Trans. R. Soc. A 373, 20140429 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Momme Hell (Univ. California) for contributing to preparing Fig. 3. C.B. acknowledges grant DE-SC0012451 from the US Department of Energy.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapio Schneider.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schneider, T., Teixeira, J., Bretherton, C. et al. Climate goals and computing the future of clouds. Nature Clim Change 7, 3–5 (2017). https://doi.org/10.1038/nclimate3190

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3190

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing