Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Why the right climate target was agreed in Paris

A Correction to this article was published on 25 August 2016

This article has been updated

The Paris Agreement duly reflects the latest scientific understanding of systemic global warming risks. Limiting the anthropogenic temperature anomaly to 1.5–2 °C is possible, yet requires transformational change across the board of modernity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tipping elements in context of the global mean temperature evolution.
Figure 2: Likelihood of exceeding the 1.5 °C and 2 °C global warming limits.
Figure 3: Beginning of induced implosion? The installed capacity of solar and wind power generation has grown at rates far exceeding expectations.

Change history

  • 13 July 2016

    In the Commentary "Why the right climate target was agreed in Paris" (Nature Clim. Change 6, 649–653; 2016), in the first paragraph of the 'Feasibility' section, 'ref. 38, Table 2.2' should have read 'ref. 37, Table 2.2'. Corrected in the online versions after print: 13 July 2016.

References

  1. Adoption of the Paris Agreement FCCC/CP/2015/L.9/Rev.1 (UNFCCC, 2015).

  2. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).

  3. German Advisory Council on Global Change Scenario for the Derivation of Global CO2-Reduction Targets and Implementation Strategies (WBGU, 1995).

  4. Jaeger, C. C. & Jaeger, J. Reg. Environ. Change 11, S15–S26 (2011).

    Article  Google Scholar 

  5. Report of the Conference of the Parties on its Sixteenth Session, held in Cancun from 29 November to 10 December 2010. Addendum: Part Two: Action taken by the Conference of the Parties at its Sixteenth Session (UNFCCC, 2010).

  6. Rockström, J. et al. Nature 461, 472–475 (2009).

    Article  Google Scholar 

  7. Steffen, W. et al. Science 347, 736 (2015).

    Article  CAS  Google Scholar 

  8. Lenton, T. M. et al. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2015).

    Article  Google Scholar 

  9. Steffen, W. et al. AMBIO 40, 739–761 (2011).

    Article  Google Scholar 

  10. Joughin, I., Smith, B. E. & Medley, B. Science 344, 735–738 (2014).

    Article  CAS  Google Scholar 

  11. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  12. Schleussner, C. F. et al. Earth Syst. Dynam. 7, 327–351 (2016).

    Article  Google Scholar 

  13. Schaeffer, M., Hare, W., Rahmstorf, S. & Vermeer, M. Nature Clim. Change 2, 867–870 (2012).

    Article  Google Scholar 

  14. Frieler, K. et al. Nature Clim. Change 3, 165–170 (2013).

    Article  Google Scholar 

  15. Report on the Structured Expert Dialogue on the 2013–2015 Review FCCC/SB/2015/INF.1 (UNFCCC, 2015).

  16. Victor, D. G. & Kennel, C. F. Nature 514, 30–31 (2014).

    Article  CAS  Google Scholar 

  17. Geden, O. Nature 521, 27–28 (2015).

    Article  CAS  Google Scholar 

  18. Smith, P. et al. Nature Clim. Change 6, 42–50 (2016).

    Article  CAS  Google Scholar 

  19. Rogelj. J. et al. Nature Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  20. Unburnable Carbon 2013: Wasted Capital and Stranded Assets (Carbon Tracker and the Grantham Research Institute on Climate Change and the Environment, 2013).

  21. Vaughan, A. Fossil fuel divestment: a brief history. The Guardian (9 October 2014).

    Google Scholar 

  22. McGlade, C. & Ekins, P. Nature 517, 187–190 (2015).

    Article  CAS  Google Scholar 

  23. Pareto, V. Manual of Political Economy (Oxford Univ. Press, 1969).

    Google Scholar 

  24. Gen, M. & Cheng, R. Genetic Algorithms and Engineering Optimization (Wiley, 2002).

    Google Scholar 

  25. Introduction to Risk-Based Decision-Making (United States Coast Guard, 2016).

  26. Rockström, J. & Schellnhuber, H. J. Paris, Potlatch and Pareto. (The Earth League, 2015).

    Google Scholar 

  27. German Advisory Council on Global Change A Social Contract for Sustainability (WBGU, 2011).

  28. Renewables 2015 Global Status Report. (REN21 Secretariat, 2015).

  29. New record-breaking year for Danish wind power. Energinet (15 January 2016); http://energinet.dk/EN/El/Nyheder/Sider/Dansk-vindstroem-slaar-igen-rekord-42-procent.aspx

  30. Trancik, J. et al. Technology Improvement and Emissions Reductions as Mutually Reinforcing Efforts: Observations from the Global Development of Solar and Wind Energy, Technical Report. (MIT, 2015); http://trancik.scripts.mit.edu/home/wp-content/uploads/2015/11/PolicyBrief.pdf

    Google Scholar 

  31. Krause, F., Bach, W. & Koomey, J. From Warming Fate to Warming Limit: Benchmarks to a Global Climate Convention (International Project for Sustainable Energy Paths, 1989).

    Google Scholar 

  32. Petschel-Held, G. & Schellnhuber, H. J. Cost-Benefit Analyses of Climate Change (ed. Toth, F. L.) 121–139 (Birkhäuser Basel, 1998)

    Book  Google Scholar 

  33. Schellnhuber, H. J. Climatic Change 100, 229–238 (2010).

    Article  Google Scholar 

  34. Jordan, A. et al. Climate Policy 13, 751–769 (2013).

    Article  Google Scholar 

  35. Marcott, S. A., Shakun, J. D., Clark, P. U. & Mix, A. C. Science 339, 1198–1201 (2013).

    Article  CAS  Google Scholar 

  36. Shakun, J. D. et al. Nature 484, 49–54 (2012).

    Article  CAS  Google Scholar 

  37. IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2014).

  38. Robinson, A., Calov, R. & Ganopolski, A. Nature Clim. Change 2, 429–432 (2012).

    Article  Google Scholar 

  39. Lenton, T. M. AMBIO 41, 10–22 (2012).

    Article  Google Scholar 

  40. Levermann, A. et al. Climatic Change 110, 845–878 (2012).

    Article  Google Scholar 

  41. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  Google Scholar 

  42. Rogelj, J., Meinshausen, M. & Knutti, R. Nature Clim. Change 2, 248–253 (2011).

    Article  Google Scholar 

  43. IPCC AR5 Scenario Database (IIASA, accessed 16 January 2016); https://tntcat.iiasa.ac.at/AR5DB/

  44. AR5 scenario explorer (PIK, accessed 16 January 2016); http://www.pik-potsdam.de/primap-live/ar5-scenario-explorer/

  45. Ricke, K. L., Moreno-Cruz, J. B., Schewe, J., Levermann, A. & Caldeira, K. Nature Geosci. 6, 5–6 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Ottmar Edenhofer, Katja Frieler, Robert Gieseke, Jonathan Koomey and Gunnar Luderer for their helpful comments and valuable hints.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans Joachim Schellnhuber, Stefan Rahmstorf or Ricarda Winkelmann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schellnhuber, H., Rahmstorf, S. & Winkelmann, R. Why the right climate target was agreed in Paris. Nature Clim Change 6, 649–653 (2016). https://doi.org/10.1038/nclimate3013

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate3013

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing