Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming

Abstract

Microbial decomposition of soil carbon in high-latitude tundra underlain with permafrost is one of the most important, but poorly understood, potential positive feedbacks of greenhouse gas emissions from terrestrial ecosystems into the atmosphere in a warmer world1,2,3,4. Using integrated metagenomic technologies, we showed that the microbial functional community structure in the active layer of tundra soil was significantly altered after only 1.5 years of warming, a rapid response demonstrating the high sensitivity of this ecosystem to warming. The abundances of microbial functional genes involved in both aerobic and anaerobic carbon decomposition were also markedly increased by this short-term warming. Consistent with this, ecosystem respiration (Reco) increased up to 38%. In addition, warming enhanced genes involved in nutrient cycling, which very likely contributed to an observed increase (30%) in gross primary productivity (GPP). However, the GPP increase did not offset the extra Reco, resulting in significantly more net carbon loss in warmed plots compared with control plots. Altogether, our results demonstrate the vulnerability of active-layer soil carbon in this permafrost-based tundra ecosystem to climate warming and the importance of microbial communities in mediating such vulnerability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Warming effects on soil variables and ecosystem C fluxes.
Figure 2: Warming effects on functional genes involved in biogeochemical cycling processes.
Figure 3: A conceptual model of the impact of warming on the active layer of tundra ecosystem processes.

Similar content being viewed by others

References

  1. Schuur, E. A. G. et al. Vulnerability of permafrost carbon to climate change: implications for the global carbon cycle. BioScience 58, 701–714 (2008).

    Article  Google Scholar 

  2. Schuur, E. et al. Expert assessment of vulnerability of permafrost carbon to climate change. Climatic Change 119, 359–374 (2013).

    Article  CAS  Google Scholar 

  3. Zhou, J. et al. Microbial mediation of carbon-cycle feedbacks to climate warming. Nature Clim. Change 2, 106–110 (2012).

    Article  CAS  Google Scholar 

  4. Graham, D. E. et al. Microbes in thawing permafrost: the unknown variable in the climate change equation. ISME J. 6, 709–712 (2012).

    Article  CAS  Google Scholar 

  5. Lee, H., Schuur, E. A. G., Inglett, K. S., Lavoie, M. & Chanton, J. P. The rate of permafrost carbon release under aerobic and anaerobic conditions and its potential effects on climate. Glob. Change Biol. 18, 515–527 (2012).

    Article  Google Scholar 

  6. Hicks Pries, C. E., Schuur, E. A. G. & Crummer, K. G. Holocene carbon stocks and carbon accumulation rates altered in soils undergoing permafrost thaw. Ecosystems 15, 162–173 (2012).

    Article  CAS  Google Scholar 

  7. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

    Article  Google Scholar 

  8. Grosse, G. et al. Vulnerability of high-latitude soil organic carbon in North America to disturbance. J. Geophys. Res. 116, G00K06 (2011).

    Article  Google Scholar 

  9. Hassol, S. J. Impacts of A Warming Arctic–Arctic Climate Impact Assessment (Cambridge Univ. Press, 2004).

    Google Scholar 

  10. Schuur, E. A. G. & Abbott, B. Climate change: high risk of permafrost thaw. Nature 480, 32–33 (2011).

    Article  CAS  Google Scholar 

  11. Lawrence, D. M., Slater, A. G. & Swenson, S. C. Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012).

    Article  Google Scholar 

  12. Natali, S. M., Schuur, E. A. G. & Rubin, R. L. Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost. J. Ecol. 100, 488–498 (2012).

    Google Scholar 

  13. Walker, M. D. et al. Plant community responses to experimental warming across the tundra biome. Proc. Natl Acad. Sci. USA 103, 1342–1346 (2006).

    Article  CAS  Google Scholar 

  14. Natali, S. M. et al. Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra. Glob. Change Biol. 17, 1394–1407 (2011).

    Article  Google Scholar 

  15. Yergeau, E. et al. Shifts in soil microorganisms in response to warming are consistent across a range of Antarctic environments. ISME J. 6, 692–702 (2012).

    Article  CAS  Google Scholar 

  16. Mackelprang, R. et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 480, 368–371 (2011).

    Article  CAS  Google Scholar 

  17. Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. Nature 521, 208–212 (2015).

    Article  CAS  Google Scholar 

  18. Coolen, M. J. L. & Orsi, W. D. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front. Microbiol. 6, 197 (2015).

    Article  Google Scholar 

  19. Sturm, M., Racine, C. & Tape, K. Climate change: increasing shrub abundance in the Arctic. Nature 411, 546–547 (2001).

    Article  CAS  Google Scholar 

  20. Walker, D. A. et al. The circumpolar arctic vegetation map. J. Veg. Sci. 16, 267–282 (2005).

    Article  Google Scholar 

  21. Schuur, E. A. G. et al. The effect of permafrost thaw on old carbon release and net carbon exchange from tundra. Nature 459, 556–559 (2009).

    Article  CAS  Google Scholar 

  22. Zhao, M. et al. Microbial mediation of biogeochemical cycles revealed by simulation of global changes with soil transplant and cropping. ISME J. 8, 2045–2055 (2014).

    Article  CAS  Google Scholar 

  23. Natali, S. M., Schuur, E. A. G., Webb, E. E., Hicks Pries, C. E. & Crummer, K. G. Permafrost degradation stimulates carbon loss from experimentally warmed tundra. Ecology 95, 602–608 (2014).

    Article  Google Scholar 

  24. Rovira, P. & Vallejo, V. R. Labile and recalcitrant pools of carbon and nitrogen in organic matter decomposing at different depths in soil: an acid hydrolysis approach. Geoderma 107, 109–141 (2002).

    Article  CAS  Google Scholar 

  25. Zhou, J. et al. High-throughput metagenomic technologies for complex microbial community analysis: open and closed formats. mBio 6, e02288-14 (2015).

    Article  Google Scholar 

  26. Lau, M. C. Y. et al. An active atmospheric methane sink in high Arctic mineral cryosols. ISME J. 9, 1880–1891 (2015).

    Article  CAS  Google Scholar 

  27. Natali, S. M. et al. Permafrost thaw and soil moisture driving CO2 and CH4 release from upland tundra. J. Geophys. Res. 120, 525–537 (2015).

    Article  CAS  Google Scholar 

  28. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  29. Liebner, S. & Wagner, D. Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. Environ. Microbiol. 9, 107–117 (2007).

    Article  CAS  Google Scholar 

  30. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  31. Hicks Pries, C. E., Schuur, E. A. G., Vogel, J. G. & Natali, S. M. Moisture drives surface decomposition in thawing tundra. J. Geophys. Res. 118, 1133–1143 (2013).

    Article  Google Scholar 

  32. Avramidis, P., Nikolaou, K. & Bekiari, V. Total organic carbon and total nitrogen in sediments and soils: a comparison of the wet oxidation–titration method with the combustion-infrared method. Agric. Agric. Sci. Procedia 4, 425–430 (2015).

    Google Scholar 

  33. Walker, M. Community baseline measurements for ITEX studies. ITEX Manual 2, 39–41 (1996).

    Google Scholar 

  34. Schuur, E. A. G., Crummer, K., Vogel, J. & Mack, M. Plant species composition and productivity following permafrost thaw and thermokarst in Alaskan tundra. Ecosystems 10, 280–292 (2007).

    Article  Google Scholar 

  35. Shaver, G. R. et al. Species composition interacts with fertilizer to control long-term change in tundra productivity. Ecology 82, 3163–3181 (2001).

    Article  Google Scholar 

  36. Clymo, R. S. The growth of Sphagnum: methods of measurement. J. Ecol. 58, 13–49 (1970).

    Article  Google Scholar 

  37. Tu, Q. et al. GeoChip 4: a functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol. Ecol. Resour. 14, 1755-0998.12239 (2014).

    Google Scholar 

  38. Wu, L. et al. Phasing amplicon sequencing on Illumina MiSeq for robust environmental microbial community analysis. BMC Microbiol. 15, s12866-015-0450-4 (2015).

    Article  Google Scholar 

  39. He, Z. et al. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 1, 67–77 (2007).

    Article  CAS  Google Scholar 

  40. Edgar, R. C., Haas, B. J., Clemente, J. C., Quince, C. & Knight, R. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200 (2011).

    Article  CAS  Google Scholar 

  41. Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).

    Article  CAS  Google Scholar 

  42. Wang, Q., Garrity, G. M., Tiedje, J. M. & Cole, J. R. Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267 (2007).

    Article  CAS  Google Scholar 

  43. Huse, S. M., Huber, J. A., Morrison, H. G., Sogin, M. L. & Welch, D. M. Accuracy and quality of massively parallel DNA pyrosequencing. Genome Biol. 8, R143 (2007).

    Article  Google Scholar 

  44. Meyer, M., Stenzel, U. & Hofreiter, M. Parallel tagged sequencing on the 454 platform. Nature Protoc. 3, 267–278 (2008).

    Article  CAS  Google Scholar 

  45. Ronaghi, M., Uhlén, M. & Nyren, P. A sequencing method based on real-time pyrophosphate. Science 281, 363–365 (1998).

    Article  CAS  Google Scholar 

  46. Chou, H. H. & Holmes, M. H. DNA sequence quality trimming and vector removal. Bioinformatics 17, 1093–1104 (2001).

    Article  CAS  Google Scholar 

  47. Wang, Q. et al. Ecological patterns of nifH genes in four terrestrial climatic zones explored with targeted metagenomics using FrameBot, a new informatics tool. mBio 4, e00592-13 (2013).

    Article  Google Scholar 

  48. Zehr, J. P., Jenkins, B. D., Short, S. M. & Steward, G. F. Nitrogenase gene diversity and microbial community structure: a cross-system comparison. Environ. Microbiol. 5, 539–554 (2003).

    Article  CAS  Google Scholar 

  49. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).

    Article  CAS  Google Scholar 

  50. Palmer, K., Drake, H. L. & Horn, M. A. Genome-derived criteria for assigning environmental narG and nosZ sequences to operational taxonomic units of nitrate reducers. Appl. Environ. Microbiol. 75, 5170–5174 (2009).

    Article  CAS  Google Scholar 

  51. Mao, Y., Yannarell, A. C. & Mackie, R. I. Changes in N-transforming archaea and bacteria in soil during the establishment of bioenergy crops. PLoS ONE 6, e24750 (2011).

    Article  CAS  Google Scholar 

  52. Pereira e Silva, M. C., Schloter-Hai, B., Schloter, M., van Elsas, J. D. & Salles, J. F. Temporal dynamics of abundance and composition of nitrogen-fixing communities across agricultural soils. PLoS ONE 8, e74500 (2013).

    Article  Google Scholar 

  53. Luo, C., Tsementzi, D., Kyrpides, N. C. & Konstantinidis, K. T. Individual genome assembly from complex community short-read metagenomic datasets. ISME J. 6, 898–901 (2011).

    Article  CAS  Google Scholar 

  54. DeSantis, T. Z. et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072 (2006).

    Article  CAS  Google Scholar 

  55. Kent, W. J. BLAT—the BLAST-like alignment tool. Genome Res. 12, 656–664 (2002).

    Article  CAS  Google Scholar 

  56. Rho, M., Tang, H. & Ye, Y. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191 (2010).

    Article  Google Scholar 

  57. Wilke, A. et al. The M5nr: a novel non-redundant database containing protein sequences and annotations from multiple sources and associated tools. BMC Bioinformatics 13, 1471-2105-13-141 (2012).

    Article  Google Scholar 

  58. Overbeek, R. et al. The subsystems approach to genome annotation and its use in the project to annotate 1000 genomes. Nucleic Acids Res. 33, 5691–5702 (2005).

    Article  CAS  Google Scholar 

  59. Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

    Article  CAS  Google Scholar 

  60. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. B 289–300 (1995).

  61. Luo, C., Rodriguez, R. L. & Konstantinidis, K. T. A user’s guide to quantitative and comparative analysis of metagenomic datasets. Methods Enzymol. 531, 525–547 (2013).

    Article  CAS  Google Scholar 

  62. Geer, L. Y. et al. The NCBI BioSystems database. Nucleic Acids Res. 38, D492–D496 (2010).

    Article  CAS  Google Scholar 

  63. Larkin, M. A. et al. Clustal W and Clustal X version 2.0. Bioinformatics 23, 2947–2948 (2007).

    Article  CAS  Google Scholar 

  64. Eddy, S. R. Profile hidden Markov models. Bioinformatics 14, 755–763 (1998).

    Article  CAS  Google Scholar 

  65. Camacho, C. et al. BLAST + : architecture and applications. BMC Bioinformatics 10, 1471-2105-10-421 (2009).

    Article  Google Scholar 

  66. Kong, Y. Btrim: a fast, lightweight adapter and quality trimming program for next-generation sequencing technologies. Genomics 98, 152–153 (2011).

    Article  CAS  Google Scholar 

  67. Oksanen, J. et al. vegan: Community Ecology Package R package version 2.3-2 (R Foundation, 2015).

    Google Scholar 

  68. Oksanen, J. & Minchin, P. R. Instability of ordination results under changes in input data order: explanations and remedies. J. Veg. Sci. 8, 447–454 (1997).

    Article  Google Scholar 

  69. Zapala, M. A. & Schork, N. J. Multivariate regression analysis of distance matrices for testing associations between gene expression patterns and related variables. Proc. Natl Acad. Sci. USA 103, 19430–19435 (2006).

    Article  CAS  Google Scholar 

  70. Clarke, K. R. Non-parametric multivariate analyses of changes in community structure. Aust. J. Ecol. 18, 117–143 (1993).

    Article  Google Scholar 

  71. Sickle, J. V. Using mean similarity dendrograms to evaluate classifications. J. Agric. Biol. Environ. Stat. 2, 370–388 (1997).

    Article  Google Scholar 

  72. Hotelling, H. in Breakthroughs in Statistics (eds Kotz, S. & Johnson, N.) 162–190 (Springer, 1992).

    Book  Google Scholar 

  73. Chambers, J., Freeny, A. & Heiberger, R. in Statistical Models in S (eds Chambers, J. M. & Hastie, T. J.) 145–193 (Wadsworth Brooks/Cole, 1992).

    Google Scholar 

  74. Luo, Y., Hui, D. & Zhang, D. Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis. Ecology 87, 53–63 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the US Department of Energy, Office of Science, Genomic Science Program under Award Numbers DE-SC0004601 and DE-SC0010715, the NSF LTER program, the Office of the Vice President for Research at the University of Oklahoma, and the Collaborative Innovation Center for Regional Environmental Quality.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed intellectual input and assistance to this study and manuscript preparation. J.Z., E.A.G.S., Y.L., J.M.T. and K.T.K. developed the original concepts. K.X., M.M.Y., Z.J.S., L.W., Z.H., Y.Q., Y.D., J.D.V.N., Q.W. and C.L. contributed reagents and data analysis. R.B. handled all soils processing and subsampling for microbial analysis. S.N. provided key field data. M.M.Y. and L.C. did sequencing and GeoChip hybridization. K.X., M.M.Y. and J.Z. performed data analysis and integration. K.X., M.M.Y. and J.Z. wrote the paper with help from E.A.G.S., K.T.K., Y.L., J.R.C. and J.M.T.

Corresponding author

Correspondence to Jizhong Zhou.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2054 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, K., M. Yuan, M., J. Shi, Z. et al. Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming. Nature Clim Change 6, 595–600 (2016). https://doi.org/10.1038/nclimate2940

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2940

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing