Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction

Abstract

Evidence suggests that several elements of the climate system could be tipped into a different state by global warming, causing irreversible economic damages. To address their policy implications, we incorporated five interacting climate tipping points into a stochastic-dynamic integrated assessment model, calibrating their likelihoods and interactions on results from an existing expert elicitation. Here we show that combining realistic assumptions about policymakers’ preferences under uncertainty, with the prospect of multiple future interacting climate tipping points, increases the present social cost of carbon in the model nearly eightfold from US$15 per tCO2 to US$116 per tCO2. Furthermore, passing some tipping points increases the likelihood of other tipping points occurring to such an extent that it abruptly increases the social cost of carbon. The corresponding optimal policy involves an immediate, massive effort to control CO2 emissions, which are stopped by mid-century, leading to climate stabilization at <1.5 °C above pre-industrial levels.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Map of the five climate tipping events considered here and the causal interactions between them previously identified in an expert elicitation8.
Figure 2: Effect of multiple interacting tipping points and altered preferences on optimal policy.
Figure 3: Effect of causal interactions between tipping events on the social cost of carbon.

Similar content being viewed by others

References

  1. Interagency Working Group on Social Cost of Carbon Social Cost of Carbon for Regulatory Impact Analysis—Under Executive Order 12866 (US Government, 2010).

  2. Interagency Working Group on Social Cost of Carbon Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis (US Government, 2013).

  3. Dietz, S. High impact, low probability? An empirical analysis of risk in the economics of climate change. Climatic Change 108, 519–541 (2011).

    Article  Google Scholar 

  4. Kopp, R. E., Golub, A., Keohane, N. O. & Onda, C. The influence of the specification of climate change damages on the social cost of carbon. Economics 6, 1–40 (2012).

    Google Scholar 

  5. Ackerman, F. & Stanton, E. A. Climate risks and carbon prices: revising the social cost of carbon. Economics 6, 1–25 (2012).

    Google Scholar 

  6. van den Bergh, J. C. J. M. & Botzen, W. J. W. A lower bound to the social cost of CO2 emissions. Nature Clim. Change 4, 253–258 (2014).

    Article  Google Scholar 

  7. Lenton, T. M. et al. Tipping elements in the Earth’s climate system. Proc. Natl Acad. Sci. USA 105, 1786–1793 (2008).

    Article  CAS  Google Scholar 

  8. Kriegler, E., Hall, J. W., Held, H., Dawson, R. & Schellnhuber, H. J. Imprecise probability assessment of tipping points in the climate system. Proc. Natl Acad. Sci. USA 106, 5041–5046 (2009).

    Article  CAS  Google Scholar 

  9. Lenton, T. M. Early warning of climate tipping points. Nature Clim. Change 1, 201–209 (2011).

    Article  Google Scholar 

  10. Lontzek, T. S., Cai, Y., Judd, K. L. & Lenton, T. M. Stochastic integrated assessment of climate tipping points indicates the need for strict climate policy. Nature Clim. Change 5, 441–444 (2015).

    Article  Google Scholar 

  11. Lenton, T. M. & Ciscar, J.-C. Integrating tipping points into climate impact assessments. Climatic Change 117, 585–597 (2013).

    Article  Google Scholar 

  12. Mastrandrea, M. D. & Schneider, S. H. Probabilistic integrated assessment of ‘dangerous’ climate change. Science 304, 571–575 (2004).

    Article  CAS  Google Scholar 

  13. Kosugi, T. Integrated assessment for setting greenhouse gas emission targets under the condition of great uncertainty about the probability and impact of abrupt climate change. J. Environ. Inform. 14, 89–99 (2009).

    Article  Google Scholar 

  14. Ackerman, F., Stanton, E. A. & Bueno, R. Fat tails, exponents, extreme uncertainty: simulating catastrophe in DICE. Ecol. Econ. 69, 1657–1665 (2010).

    Article  Google Scholar 

  15. Weitzman, M. L. GHG targets as insurance against catastrophic climate damages. J. Public Econ. Theor. 14, 221–244 (2012).

    Article  Google Scholar 

  16. Cai, Y., Judd, K. L., Lenton, T. M., Lontzek, T. S. & Narita, D. Environmental tipping points significantly affect the cost–benefit assessment of climate policies. Proc. Natl Acad. Sci. USA 112, 4606–4611 (2015).

    Article  CAS  Google Scholar 

  17. Lemoine, D. & Traeger, C. Watch your step: optimal policy in a tipping climate. Am. Econ. J. 6, 137–166 (2014).

    Google Scholar 

  18. Lemoine, D. & Traeger, C. P. Economics of tipping the climate dominoes. Nature Clim. Change http://dx.doi.org/10.1038/nclimate2902 (2016).

  19. Cai, Y., Judd, K. L. & Lontzek, T. S. The social cost of carbon with economic and climate risks. Preprint at http://arxiv.org/abs/1504.06909 (2015).

  20. Nordhaus, W. Estimates of the social cost of carbon: concepts and results from the DICE-2013R model and alternative approaches. J. Assoc. Environ. Res. Econ. 1, 273–312 (2014).

    Google Scholar 

  21. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  22. Epstein, L. G. & Zin, S. E. Substitution, risk aversion, and the temporal behavior of consumption and asset returns: a theoretical framework. Econometrica 57, 937–969 (1989).

    Article  Google Scholar 

  23. Pindyck, R. S. & Wang, N. The economic and policy consequences of catastrophes. Am. Econ. J. 5, 306–339 (2013).

    Google Scholar 

  24. Vissing-Jørgensen, A. & Attanasio, O. P. Stock-market participation, intertemporal substitution, and risk-aversion. Am. Econ. Rev. 93, 383–391 (2003).

    Article  Google Scholar 

  25. Bansal, R. & Yaron, A. Risks for the long run: a potential resolution of asset pricing puzzles. J. Finance 59, 1481–1509 (2004).

    Article  Google Scholar 

  26. Barro, R. J. Rare disasters, asset prices, and welfare costs. Am. Econ. Rev. 99, 243–264 (2009).

    Article  Google Scholar 

  27. Nordhaus, W. D. Expert opinion on climatic change. Am. Sci. 82, 45–51 (1994).

    Google Scholar 

  28. Nordhaus, W. D. & Boyer, J. Warming the World. Models of Global Warming (MIT Press, 2000).

    Book  Google Scholar 

  29. Baumol, W. J. On taxation and the control of externalities. Am. Econ. Rev. 62, 307–322 (1972).

    Google Scholar 

  30. Kopp, R. E. & Mignone, B. K. The U.S. government’s social cost of carbon estimates after their first two years: pathways for improvement. Economics 6, 1–41 (2012).

    Google Scholar 

  31. Khan, S. A. et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Clim. Change 4, 292–299 (2014).

    Article  Google Scholar 

  32. Harig, C. & Simons, F. J. Accelerated West Antarctic ice mass loss continues to outpace East Antarctic gains. Earth Planet. Sci. Lett. 415, 134–141 (2015).

    Article  CAS  Google Scholar 

  33. Csatho, B. M. et al. Laser altimetry reveals complex pattern of Greenland Ice Sheet dynamics. Proc. Natl Acad. Sci. USA 111, 18478–18483 (2014).

    Article  CAS  Google Scholar 

  34. Bamber, J., van den Broeke, M., Ettema, J., Lenaerts, J. & Rignot, E. Recent large increases in freshwater fluxes from Greenland into the North Atlantic. Geophys. Res. Lett. 39, L19501 (2012).

    Article  Google Scholar 

  35. Peterson, B. J. et al. Increasing river discharge to the Arctic Ocean. Science 298, 2171–2173 (2002).

    Article  CAS  Google Scholar 

  36. Joughin, I., Smith, B. E. & Medley, B. Marine ice sheet collapse potentially under way for the Thwaites Glacier Basin, West Antarctica. Science 344, 735–738 (2014).

    Article  CAS  Google Scholar 

  37. Rignot, E., Mouginot, J., Morlighem, M., Seroussi, H. & Scheuchl, B. Widespread, rapid grounding line retreat of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica, from 1992 to 2011. Geophys. Res. Lett. 41, 3502–3509 (2014).

    Article  Google Scholar 

  38. Wouters, B. et al. Dynamic thinning of glaciers on the Southern Antarctic Peninsula. Science 348, 899–903 (2015).

    Article  CAS  Google Scholar 

  39. Glotter, M. J., Pierrehumbert, R. T., Elliott, J. W., Matteson, N. J. & Moyer, E. J. A simple carbon cycle representation for economic and policy analyses. Climatic Change 126, 319–335 (2014).

    Article  CAS  Google Scholar 

  40. Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  41. Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 °C. Nature Clim. Change 5, 519–527 (2015).

    Article  Google Scholar 

  42. Rogelj, J. et al. Zero emission targets as long-term global goals for climate protection. Environ. Res. Lett. 10, 105007 (2015).

    Article  Google Scholar 

  43. Nordhaus, W. The Climate Casino: Risk, Uncertainty, and Economics for a Warming World (Yale Univ. Press, 2013).

    Google Scholar 

  44. Anda, J., Golub, A. & Strukova, E. Economics of climate change under uncertainty: benefits of flexibility. Energy Policy 37, 1345–1355 (2009).

    Article  Google Scholar 

  45. Martin, I. W. R. & Pindyck, R. S. Averting catastrophes: the strange economics of scylla and charybdis. Am. Econ. Rev. 105, 2947–2985 (2015).

    Article  Google Scholar 

  46. Cai, Y., Judd, K. L., Thain, G. & Wright, S. J. Solving dynamic programming problems on a computational grid. Comput. Econ. 45, 261–284 (2015).

    Article  Google Scholar 

  47. Nævdal, E. & Oppenheimer, M. The economics of the thermohaline circulation—a problem with multiple thresholds of unknown location. Resour. Energy Econ. 29, 262–283 (2007).

    Article  Google Scholar 

  48. Kostov, Y., Armour, K. C. & Marshall, J. Impact of the Atlantic meridional overturning circulation on ocean heat storage and transient climate change. Geophys. Res. Lett. 41, 2108–2116 (2014).

    Article  Google Scholar 

  49. Perez, F. F. et al. Atlantic Ocean CO2 uptake reduced by weakening of the meridional overturning circulation. Nature Geosci. 6, 146–152 (2013).

    Article  CAS  Google Scholar 

  50. Zickfeld, K., Eby, M. & Weaver, A. J. Carbon-cycle feedbacks of changes in the Atlantic meridional overturning circulation under future atmospheric CO2 . Glob. Biogeochem. Cycles 22, GB3024 (2008).

    Article  Google Scholar 

  51. Huybrechts, P. & De Wolde, J. The dynamic response of the Greenland and Antarctic ice sheets to multiple-century climatic warming. J. Clim. 12, 2169–2188 (1999).

    Article  Google Scholar 

  52. Robinson, A., Calov, R. & Ganopolski, A. Multistability and critical thresholds of the Greenland ice sheet. Nature Clim. Change 2, 429–432 (2012).

    Article  Google Scholar 

  53. Bamber, J. L., Riva, R. E. M., Vermeersen, B. L. A. & LeBrocq, A. M. Reassessment of the potential sea-level rise from a collapse of the West Antarctic ice sheet. Science 324, 901–903 (2009).

    Article  CAS  Google Scholar 

  54. Tarnocai, C. et al. Soil organic carbon pools in the northern circumpolar permafrost region. Glob. Biogeochem. Cycles 23, GB2023 (2009).

    Article  Google Scholar 

  55. Rohling, E. J. et al. High rates of sea-level rise during the last interglacial period. Nature Geosci. 1, 38–42 (2008).

    Article  CAS  Google Scholar 

  56. Mitrovica, J. X., Tamislea, M. E., Davis, J. L. & Milne, G. A. Recent mass balance of polar ice sheets inferred from patterns of sea-level change. Nature 409, 1026–1029 (2001).

    Article  CAS  Google Scholar 

  57. Huntingford, C. et al. Towards quantifying uncertainty in predictions of Amazon ‘dieback’. Phil. Trans. R. Soc. B 363, 1857–1864 (2008).

    Article  Google Scholar 

  58. Brando, P. M. et al. Abrupt increases in Amazonian tree mortality due to drought–fire interactions. Proc. Natl Acad. Sci. USA 111, 6347–6352 (2014).

    Article  CAS  Google Scholar 

  59. Feldpausch, T. R. et al. Tree height integrated into pantropical forest biomass estimates. Biogeosciences 9, 3381–3403 (2012).

    Article  Google Scholar 

  60. Cai, W. et al. ENSO and greenhouse warming. Nature Clim. Change 5, 849–859 (2015).

    Article  Google Scholar 

  61. van der Werf, G. R. et al. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303, 73–76 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. L. Judd and participants of the 2015 Annual Conference of the European Association of Environmental and Resource Economics for comments. Y.C. was supported by NSF (SES-0951576 and SES-146364). T.S.L. was supported by the Züricher Universitätsverein, the University of Zurich, and the Ecosciencia Foundation. T.M.L. was supported by a Royal Society Wolfson Research Merit Award and the European Commission HELIX project (ENV.2013.6.1-3). Supercomputer support was provided by Blue Waters (NSF awards OCI-0725070 and ACI-1238993, and the state of Illinois).

Author information

Authors and Affiliations

Authors

Contributions

Y.C., T.M.L. and T.S.L. designed research, performed research and wrote the paper.

Corresponding authors

Correspondence to Timothy M. Lenton or Thomas S. Lontzek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2328 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y., Lenton, T. & Lontzek, T. Risk of multiple interacting tipping points should encourage rapid CO2 emission reduction. Nature Clim Change 6, 520–525 (2016). https://doi.org/10.1038/nclimate2964

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2964

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing