Biophysical and economic limits to negative CO2 emissions

Journal name:
Nature Climate Change
Volume:
6,
Pages:
42–50
Year published:
DOI:
doi:10.1038/nclimate2870
Received
Accepted
Published online

Abstract

To have a >50% chance of limiting warming below 2 °C, most recent scenarios from integrated assessment models (IAMs) require large-scale deployment of negative emissions technologies (NETs). These are technologies that result in the net removal of greenhouse gases from the atmosphere. We quantify potential global impacts of the different NETs on various factors (such as land, greenhouse gas emissions, water, albedo, nutrients and energy) to determine the biophysical limits to, and economic costs of, their widespread application. Resource implications vary between technologies and need to be satisfactorily addressed if NETs are to have a significant role in achieving climate goals.

At a glance

Figures

  1. Schematic representation of carbon flows among atmospheric, land, ocean and geological reservoirs.
    Figure 1: Schematic representation of carbon flows among atmospheric, land, ocean and geological reservoirs.

    a, Climate change results from the addition of geological carbon to the atmosphere through combustion or other processing of fossil fuels for energy. Carbon is indicated in red. b, Bioenergy seeks to avoid the net addition of carbon to the atmosphere by instead using biomass energy at a rate that matches the uptake of carbon by re-growing bioenergy feedstocks. c, Carbon capture and storage (CCS) technologies intervene to capture most of the potential carbon emissions from fossil fuels, and return them to a geological (or possibly ocean) reservoir. d–h, NETs remove carbon from the atmosphere, either through biological uptake (g,h), uptake by biological or industrial processes with CCS (d,e) or enhanced weathering of minerals (f). Any atmospheric perturbation will lead to the redistribution of carbon between the other reservoirs (but these homeostatic processes are not shown). Note that there are significant differences in the materials and energy requirements for each process to remove (or avoid adding) a unit mass of carbon from (or to) the atmosphere.

  2. Scenarios including NETs for each of the scenario categories, corresponding to the ranges and median values shown in Supplementary Table 3.
    Figure 2: Scenarios including NETs for each of the scenario categories, corresponding to the ranges and median values shown in Supplementary Table 3.

    Scenarios with no technology constraints (that is, including NETs) from the AMPERE10, 44 and LIMITS35 modelling comparison exercises are shown in colours, with all other scenarios from the IPCC AR5 database shown in grey. See the caption of Supplementary Table 3 for an explanation of the representation of gross positive and gross negative emissions. Net land use change fluxes are included (note, the 1997 fluctuation is attributable to Indonesian peat fires). Sources: CDIAC94, IPCC AR5 scenario database (https://secure.iiasa.ac.at/web-apps/ene/AR5DB/)95 and the Global Carbon Project.

  3. The different requirements and impacts of NETs.
    Figure 3: The different requirements and impacts of NETs.

    a–f, Negative emissions technologies have different land (a), water (b) and nutrient (c) requirements, different geophysical impacts on climate (for example, albedo; d), generate or require different amounts of energy (e), and entail different capital and operating costs (f). For example, carbon dioxide removal (CDR) technologies such as DAC and EW of silicate rock tend to require much less land and water than strategies that depend on photosynthesis to reduce atmospheric carbon (a,b), but the CDR technologies demand substantial energy and economic investment per unit of negative emissions (e,f). Among BECCS options, forest feedstocks tend to require less nitrogen than purpose-grown crops (c), but present greater risk of unwanted changes in albedo (d), and generate less energy (e). AR has been omitted from b,e,f to avoid confusion with forest BECCS (where the CCS component is included). See Supplementary Methods and Table 1 for data sources.

  4. The impacts and investment requirements of NETs to meet the 2 [deg]C target.
    Figure 4: The impacts and investment requirements of NETs to meet the 2 °C target.

    A schematic representation of the aggregate impacts of NETs on land, energy and water, and relative investment needs, for levels of implementation equivalent to BECCS (3.3 Gt C yr−1 negative emissions in 2100) in scenarios consistent with a 2 °C target (or mean and maximum attainable, where that level of negative emissions cannot be reached). Water requirement is shown as water droplets, with quantities in km3 yr−1. All values are for the year 2100 except relative costs, which are for 2050 (see Supplementary Methods).

References

  1. Le Quéré, C. et al. The global carbon budget 1959–2011. Earth Syst. Sci. Data 5, 165185 (2013).
  2. Peters, G. P. et al. The challenge to keep global warming below 2 °C. Nature Clim. Change 3, 46 (2013).
    A short article outlining the enormous challenge of meeting a 2 °C climate stabilization target.
  3. IPCC Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2014).
    The latest IPCC Assessment Report on the mitigation options that are available to stabilize the climate.
  4. Tavoni, M. et al. Post-2020 climate agreements in the major economies assessed in the light of global models. Nature Clim. Change 5, 119126 (2015).
  5. Krey, V., Luderer, G., Clarke, L. & Kriegler, E. Getting from here to there — energy technology transformation pathways in the EMF27 scenarios. Clim. Change 123, 369382 (2014).
  6. Edmonds, J. et al. Can radiative forcing be limited to 2.6 Wm−2 without negative emissions from bioenergy and CO2 capture and storage? Clim. Change 118, 2943 (2013).
  7. Van Vuuren, D. P. et al. The role of negative CO2 emissions for reaching 2 °C — insights from integrated assessment modelling. Clim. Change 118, 1527 (2013).
  8. Rogelj, J., McCollum, D. L., Reisinger, A., Meinshausen, M. & Riahi, K. Probabilistic cost estimates for climate change mitigation. Nature 493, 7983 (2013).
  9. Clarke, L. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2014).
  10. Riahi, K. et al. Locked into Copenhagen pledges — implications of short-term emission targets for the cost and feasibility of long-term climate goals. Technol. Forecast. Soc. 90, 823 (2015).
  11. Obersteiner, M. et al. Managing climate risk. Science 294, 786787 (2001).
  12. Creutzig F. et al. Bioenergy and climate change mitigation: an assessment. Global Change Biol. Bioenergy 7, 916944 (2015).
  13. Keith, D. Why capture CO2 from the atmosphere. Science 325, 16541655 (2009).
  14. Socolow, R. et al. Direct air capture of CO2 with chemicals: a technology assessment for the APS Panel on Public Affairs. (American Physical Society, 2011).
    An in-depth assessment of direct air-capture technologies.
  15. Schuiling, R. D. & Krijgsman, P. Enhanced weathering: an effective and cheap tool to sequester CO2. Climatic Change 74, 349354 (2006).
  16. Rau, G. H., Knauss, K. G., Langer, W. H. & Caldeira, K. Reducing energy-related CO2 emissions using accelerated weathering of limestone. Energy 32, 14711477 (2007).
  17. Köhler, P., Hartmann, J. & Wolf-Gladrow, D. A. Geoengineering potential of artificially enhanced silicate weathering of olivine. Proc. Natl Acad. Sci. USA 107, 2022820233 (2010).
  18. Hartmann, J. & Kempe, S. What is the maximum potential for CO2 sequestration by “stimulated” weathering on the global scale? Naturwissenschaften 95, 11591164 (2008).
  19. Kelemen, P. B. & Matter, J. M. In situ carbonation of peridotite for CO2 storage. Proc. Natl Acad. Sci. USA 105, 1729517300 (2008).
  20. Arora, V. K. & Montenegro, A. Small temperature benefits provided by realistic afforestation efforts. Nature Geosci. 4, 514518, (2011).
  21. Canadell, J. G. & Raupach, M. R. Managing forests for climate change mitigation. Science 320, 14561457 (2008).
  22. Jackson, R. B. et al. Protecting climate with forests. Environ. Res. Lett. 3, 044006 (2008).
  23. Sarmiento, J. L., Gruber, N., Brzezinski, M. A. & Dunne, J. P. High-latitude controls of thermocline nutrients and low latitude biological productivity. Nature 427, 5660 (2004).
  24. Joos, F., Sarmiento, J. L. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349, 772775 (1991).
  25. Kheshgi, H. S. Sequestering atmospheric carbon dioxide by increasing ocean alkalinity. Energy 20, 915922 (1995).
  26. Smith, P. Soils and climate change. Curr. Opin. Environ. Sust. 4, 539544 (2012).
  27. Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nature Clim. Change 4, 678683 (2014).
  28. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789813 (2008).
  29. Woolf, D., Amonette, J. E., Street-Perrott. A., Lehmann, J. & Joseph, S. Sustainable biochar to mitigate global climate change. Nature Commun. 1, 56 (2010).
  30. Schiermeier, Q. Convention discourages ocean fertilization. Nature http://dx.doi.org/10.1038/news.2007.230 (2007).
  31. Smith, P. et al. How much land based greenhouse gas mitigation can be achieved without compromising food security and environmental goals? Global Change Biol. 19, 22852302 (2013).
  32. Smith, P. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 11 (IPCC, Cambridge Univ. Press, 2014).
  33. Smith, P. Soil carbon sequestration and biochar as negative emission technologies. Global Change Biol. (in the press).
  34. Azar, C. et al. The feasibility of low CO2 concentration targets and the role of bio-energy carbon-capture and storage. Clim. Change 100, 195202 (2010).
  35. Kriegler, E. et al. What does the 2°C target imply for a global climate agreement in 2020? The LIMITS study on Durban Platform scenarios. Clim. Change Econ. 04, 1340008 (2013).
  36. Strengers, B. J., Minnen, J. G. V. & Eickhout, B. The role of carbon plantations in mitigating climate change: potentials and costs. Clim. Change 88, 343366 (2008).
  37. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 11831186 (2009).
  38. Reilly, J. et al. Using land to mitigate climate change: hitting the target, recognizing the trade-offs. Environ. Sci. Technol. 46, 56725679 (2012).
  39. Humpenöder, F. et al. Investigating afforestation and bioenergy CCS as climate change mitigation strategies. Environ. Res. Lett. 9, 064029 (2014).
  40. Chen, C. & Tavoni, M. Direct air capture of CO2 and climate stabilization: a model based assessment. Clim. Change 118, 5972 (2013).
  41. Fuss, S. et al. Betting on negative emissions. Nature Clim. Change 4, 850853 (2014).
  42. Kriegler E. et al. Is atmospheric carbon dioxide removal a game changer for climate change mitigation? Clima. Change 118, 4557 (2013).
  43. Sims, R. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Ch. 8 (IPCC, Cambridge Univ. Press, 2014).
  44. Kriegler, E. et al. Making or breaking climate targets: The AMPERE study on staged accession scenarios for climate policy. Technological Forecasting and Social Change, Part A 90, 2444 (2015).
    A study showing the impact of delay in implementation of mitigation on climate stabilization over the course of the twenty-first century.
  45. National Academy of Sciences. Climate Intervention: Carbon Dioxide Removal and Reliable Sequestration (National Academies Press, 2015).
    An in-depth report on carbon dioxide removal (equivalent to negative emissions) technologies.
  46. Calvin, K. et al. A multi-model analysis of the regional and sectoral roles of bioenergy in near-and long-term CO2 emissions reduction. Clim. Change Econ. 4, 1340014 (2013).
  47. Popp, A. et al. Land-use transition for bioenergy and climate stabilization: model comparison of drivers, impacts and interactions with other land use based mitigation options. Clim. Change 123, 495509 (2014).
  48. Bonsch, M. et al. Trade-offs between land and water requirements for large-scale bioenergy production. Global Change Biol. Bioenergy http://dx.doi.org/10.1111/gcbb.12226 (2014).
  49. Wieder, W. R., Cleveland, C. C., Smith, W. K. & Todd-Brown, K. Future productivity and carbon storage limited by terrestrial nutrient availability. Nature Geosci. 8, 441444 (2015).
  50. Smith, L. J. & Torn, M. S. Ecological limits to terrestrial biological carbon dioxide removal. Clim. Change 118, 89103 (2013).
    A study examining some ecological limits to land-based negative emission technologies.
  51. Scott, V., Haszeldine, R. S., Tett, S. F. B. & Oschlies, A. Fossil fuels in a trillion tonne world. Nature Clim. Change 5, 419423 (2015).
  52. Benson, S. M. et al. in Global Energy Assessment Toward a Sustainable Future Ch. 13 (Cambridge Univ. Press, 2012).
  53. Zhao, K. & Jackson, R. B. Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol. Monogr. 84, 329353 (2014).
  54. Zhuang, Q., Qin, Z & Chen, M. Biofuel, land and water: maize, switchgrass or Miscanthus? Environ. Res. Lett. 8, 015020 (2013).
  55. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).
  56. Renforth, P. The potential of enhanced weathering in the UK. Int. J. Greenh. Gas Con. 10, 229243 (2012).
  57. Christian, D., Riche, A. B. & Yales, N. E. Growth, yield and mineral content of Miscanthus × giganteus grown as a biofuel for 14 successive harvests. Ind. Crop Prod. 28, 320327 (2008).
  58. St Clair, S., Hiller, J. & Smith, P. Estimating the pre-harvest greenhouse gas costs of energy crop production. Biomass Bioenergy 32, 442452 (2008).
  59. Swann, A. L., Fung, I. Y., Levis, S., Bonan, G. B. & Doney, S. C. Changes in Arctic vegetation amplify high-latitude warming through the greenhouse effect. Proc. Natl Acad. Sci. USA 107, 12951300 (2010).
  60. Ma, D., Notaro, M., Liu, Z. Y., Chen, G. S. & Liu, Y. Q. Simulated impacts of afforestation in East China monsoon region as modulated by ocean variability. Clim. Dynam. 41, 24392450 (2013).
  61. Betts, A. K. & Ball, J. H. Albedo over the boreal forest. J. Geophys. Res. 102, 2890128910 (1997).
  62. Betts R. A. Offset of the potential carbon sink from boreal forestation by decreases in surface albedo. Nature 408, 187190 (2007).
  63. Betts R. A., Falloon, P. D., Goldewijk, K. K. & Ramankutty, N. Biogeophysical effects of land use on climate: Model simulations of radiative forcing and large-scale temperature change. Agr. Forest Meteorol. 142, 216233 (2007).
  64. Schaeffer, M. et al. CO2 and albedo climate impacts of extratropical carbon and biomass plantations. Global Biogeochem. Cy. 20, GB2020 (2006).
  65. Jones, A. D. et al. Greenhouse gas policy influences climate via direct effects of land-use change. J. Clim. 26, 36573670 (2013).
  66. Mazzotti, M., Bociocchi, R., Desmond, M. J. & Socolow, R. Direct air capture of CO2 with chemicals: optimization of a two-loop hydroxide carbonate system using a countercurrent air-liquid contactor. Clim. Change 118, 119135 (2013).
  67. Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Clim. Change 123, 705718 (2014).
  68. Lenton, T. M. in Geoengineering of the Climate System (eds Harrison, R. M. & Hester, R. E.) (Royal Society of Chemistry, 2014).
  69. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 1294212947 (2007).
  70. Schueler, V., Weddige, U., Beringer, T., Gamba, L. & Lamers, P. Global biomass potentials under sustainability restrictions defined by the European Renewable Energy Directive 2009/28/EC. Global Change Biol. Bioenergy 5, 652663 (2013).
  71. FAOSTAT (accessed 25 June 2015); http://faostat3.fao.org/home/E
  72. Canadell, J. G., Schulze, E.-D. Global potential of biospheric carbon management for climate mitigation. Nature Commun. 5, 5282 (2014).
  73. Smith, P. et al. Competition for land. Phil. Trans. R. Soc. B 365, 29412957 (2010).
  74. Thompson, B. & Cohen, M. J. The impact of climate change and bioenergy on nutrition (Springer, 2012).
  75. Valentine, J., Clifton-Brown, J., Hastings, A., Robson, P, Allison G. & Smith, P. Food vs. fuel: the use of land for lignocellulosic 'next generation' energy crops that minimise competition with primary food production. Global Change Biol. Bioenergy 4, 119 (2012).
  76. Bustamante, M. et al. Co-benefits, trade-offs, barriers and policies for greenhouse gas mitigation in the Agriculture, Forestry and Other Land Use (AFOLU) sector. Global Change Biol. 20, 32703290 (2014).
  77. Powell, T. W. R. & Lenton, T. M. Future carbon dioxide removal via biomass energy constrained by agricultural efficiency and dietary trends. Energy Environ. Sci. 5, 81168133 (2012).
  78. Smith, P. Delivering food security without increasing pressure on land. Global Food Sec. 2, 1823 (2013).
  79. Bajželj, B. et al. The importance of food demand management for climate mitigation. Nature Clim. Change 4, 924929 (2014).
  80. Vörösmarty, C. J. Global water resources: vulnerability from climate change and population growth. Science 289, 284288 (2000).
  81. Stolaroff, J. K., Keith, D. W. & Lowry, G. V. Carbon dioxide capture from atmospheric air using sodium hydroxide spray. Environ. Sci. Technol. 42, 27282735 (2008).
  82. Oki, T. & Kanae, S. Global hydrological cycles and world water resources. Science 313, 10681072 (2006).
  83. Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable freshwater. Science 271, 785788 (1996).
  84. Rockstrom, J. et al. The unfolding water drama in the Anthropocene: towards a resilience-based perspective on water for global sustainability. Ecohydrol. 7, 12491261 (2014).
  85. Creutzig, F. et al. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nature Clim. Change 2, 320327 (2012).
  86. Cowie, A. L., Smith, P. & Johnson, D. Does soil carbon loss in biomass production systems negate the greenhouse benefits of bioenergy? Mitigation Adapt. Strateg. Global Chang. 11, 9791002 (2006).
  87. McCollum, D. et al. Energy investments under climate policy: a comparison of global models. Clim. Change Econ. 4, 1340010 (2013).
  88. Creutzig, F. Economic and ecological views on climate change mitigation with bioenergy and negative emissions. Global Change Biol. Bioenergy http://dx.doi.org/10.1111/gcbb.12235 (2015).
  89. Kato, E. & Yamagata, Y. BECCS capability of dedicated bioenergy crops under a future land-use scenario targeting net negative carbon emissions. Earth's Future 2, 421439 (2014).
  90. Scott, V., Gilfillan, S., Markusson, N., Chalmers, H., Haszeldine, R. S. Last chance for carbon capture and storage. Nature Clim. Change 3, 105111 (2012).
  91. Blackford, J. et al. Detection and impacts of leakage from sub-seafloor deep geological carbon dioxide storage. Nature Clim. Change 4, 10111016 (2014).
  92. Luderer, G. et al. Economic mitigation challenges: how further delay closes the door for achieving climate targets. Environ. Res. Lett. 8, 034033 (2013).
    A study showing the urgency of climate mitigation action.
  93. Gasser, T., Guivarch, G., Tachiiri, K., Jones, C. D. & Ciais, P. Negative emissions physically needed to keep global warming below 2°C. Nature Commun. 6, 7958 (2015).
  94. Boden, T. A., Marland, G. & Andres, R. J. Global, regional, and national fossil-fuel CO2 emissions. (Carbon Dioxide Information Analysis Center, 2015).
  95. Krey, V. et al. in Climate Change 2014: Mitigation of Climate Change (eds Edenhofer, O. et al.) Annex Ch. 2, 13081318 (IPCC, Cambridge Univ. Press, 2014).

Download references

Author information

Affiliations

  1. Institute of Biological & Environmental Sciences, University of Aberdeen, 23 St Machar Drive, Aberdeen, AB24 3UU, UK

    • Pete Smith
  2. University of California, Irvine, Department of Earth System Science, Irvine, California 92697-3100, USA

    • Steven J. Davis
  3. Mercator Research Institute on Global Commons and Climate Change, Torgauer Street 12-15, 10829 Berlin, Germany

    • Felix Creutzig,
    • Sabine Fuss &
    • Jan Minx
  4. Technical University Berlin, Straβe des 17, Junis 135, 10623 Berlin, Germany

    • Felix Creutzig
  5. Potsdam Institute for Climate Impact Research (PIK), PO Box 60 12 03, 14412 Potsdam, Germany

    • Jan Minx &
    • Elmar Kriegler
  6. Hertie School of Governance, Friedrichstrasse 180, 10117 Berlin, Germany

    • Jan Minx
  7. AgroParisTech, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France

    • Benoit Gabrielle
  8. National de la Recherche Agronomique (INRA), Environment and Arable Crops Research Unit, UMR1402 ECOSYS, F-78850 Thiverval-Grignon, France

    • Benoit Gabrielle
  9. The Institute of Applied Energy (IAE), Minato 105-0003, Tokyo, Japan

    • Etsushi Kato
  10. Department of Earth System Science, Woods Institute for the Environment and Precourt Institute for Energy, Stanford University, Stanford, California 94305, USA

    • Robert B. Jackson
  11. NSW Department of Primary Industries, University of New England, Armidale NSW 2351, Australia

    • Annette Cowie
  12. Copernicus Institute for Sustainable Development, Department of Environmental Sciences, Utrecht University, Utrecht, 3584 CS, The Netherlands

    • Detlef P. van Vuuren
  13. PBL Netherlands Environmental Assessment Agency, PO Box 303 3720, AH Bilthoven, The Netherlands

    • Detlef P. van Vuuren
  14. Swiss Federal Institute of Technology (ETH Zürich), Universitätstrasse 16, Zürich 8092, Switzerland

    • Joeri Rogelj
  15. International Institute for Applied Systems Analysis (IIASA), Schlossplatz 1, Laxenburg A-2361, Austria

    • Joeri Rogelj,
    • David McCollum,
    • Volker Krey,
    • Arnulf Grübler,
    • Matthias Jonas,
    • Florian Kraxner,
    • Nebojsa Nakicenovic,
    • Michael Obersteiner &
    • Mathis Rogner
  16. Laboratoire des Sciences du Climat et de l'Environnement (LSCE), Institut Pierre-Simon Laplace (IPSL), CEA-CNRS-UVSQ, CEA l'Orme des Merisiers, 91191 Gif-sur-Yvette Cedex, France

    • Philippe Ciais &
    • Thomas Gasser
  17. Stanford University 473 Via Ortega, Stanford, California, 94305-2205, USA

    • Jennifer Milne
  18. Global Carbon Project, CSIRO Oceans and Atmosphere Research, GPO Box 3023, Canberra, Australian Capital Territory 2601, Australia

    • Josep G. Canadell
  19. Center for International Climate and Environmental Research-Oslo (CICERO), Gaustadalléen 21, Oslo 0349, Norway

    • Glen Peters,
    • Robbie Andrew &
    • Asbjørn Torvanger
  20. US Carbon Cycle Science Program, US Global Change Research Program, Washington, DC 20006, USA

    • Gyami Shrestha
  21. University of Exeter, North Park Road, Exeter EX4 4QF, UK

    • Pierre Friedlingstein
  22. Centre International de Recherche sur l'Environnement et le Développement (CIRED), CNRS-PontsParisTech-EHESS-AgroParisTech-CIRAD, Campus du Jardin Tropical, 45 bis avenue de la Belle Gabrielle, 94736 Nogent-sur-Marne Cedex, France

    • Thomas Gasser
  23. King Abdullah Petroleum Studies and Research Center, PO Box 88550, Riyadh 11672, Saudi Arabia

    • Wolfgang K. Heidug
  24. Met Office Hadley Centre, FitzRoy Road, Exeter, Devon EX1 3PB, UK

    • Chris D. Jones &
    • Jason Lowe
  25. University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK

    • Emma Littleton
  26. Institute of Energy and Environment, University of Sao Paulo, Av. Prof. Luciano Gualberto, 1.289 – Cidade, Universitaria, São Paulo 05508-010, Brazil

    • José Roberto Moreira
  27. University of Maryland, 2101 Van Munching Hall, School of Public Policy, College Park, MD 20742, USA

    • Anand Patwardhan
  28. Carnegie Mellon University, Baker Hall 128A, Pittsburgh, Pennsylvania 15213, USA

    • Ed Rubin
  29. Global Carbon Project — Tsukuba International Office, c/o NIES, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan

    • Ayyoob Sharifi
  30. National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba 305-8506, Ibaraki, Japan

    • Yoshiki Yamagata
  31. Pacific Northwest National Laboratory Joint Global Change Research Institute, 5825 University Research Court, Suite 3500, College Park, Maryland 20740, USA

    • Jae Edmonds
  32. Korea University, 5-ga, Anam-dong, Seongbuk-gu, Seoul 136-701, Korea

    • Cho Yongsung

Contributions

P.S. led the writing of the paper, with contributions from all authors in the inception of the study and in writing the drafts. P.S. led the analysis with significant contributions from S.J.D., F.C., S.F., J.M., B.G., R.B.J., A.C., E.Kr., D.M. and D.V.V. Figures were conceptualized and produced by S.J.D., J.R., P.C., S.F., P.S., G.P., R.A. and J.M.

Competing financial interests

M.O. was given a share in Biorecro, a company that cooperates with BECCS projects globally, honouring his pioneering work on BECCS. The other authors declare no competing financial interests.

Corresponding author

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary Information (489KB)

    Supplementary Information

Additional data