Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Attribution of climate extreme events

Abstract

There is a tremendous desire to attribute causes to weather and climate events that is often challenging from a physical standpoint. Headlines attributing an event solely to either human-induced climate change or natural variability can be misleading when both are invariably in play. The conventional attribution framework struggles with dynamically driven extremes because of the small signal-to-noise ratios and often uncertain nature of the forced changes. Here, we suggest that a different framing is desirable, which asks why such extremes unfold the way they do. Specifically, we suggest that it is more useful to regard the extreme circulation regime or weather event as being largely unaffected by climate change, and question whether known changes in the climate system's thermodynamic state affected the impact of the particular event. Some examples briefly illustrated include 'snowmaggedon' in February 2010, superstorm Sandy in October 2012 and supertyphoon Haiyan in November 2013, and, in more detail, the Boulder floods of September 2013, all of which were influenced by high sea surface temperatures that had a discernible human component.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Haiyan and sea level.
Figure 2: August SSTs for 12–20° N, 110–100° W, just west of Mexico.
Figure 3: Water vapour channel imagery, GOES East 6.5 μm and GOES West 6.7 μm merged, for 18:45 GMT on 12 September 2013.
Figure 4: Imagery from the 6.5-μm water vapour channel of NOAA's GOES 13 satellite.
Figure 5: Tropical storms Manuel and Ingrid.

Similar content being viewed by others

References

  1. Johnstone, J. A. & Mantua, N. J. Atmospheric controls on northeast Pacific temperature variability and change, 1900–2012. Proc. Natl Acad. Sci. USA 111, 14360–14365 (2014).

    Article  CAS  Google Scholar 

  2. Shepherd, T. G. Atmospheric circulation as a source of uncertainty in climate change projections. Nature Geosci. 7, 703–708 (2014).

    Article  CAS  Google Scholar 

  3. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  4. Herring, S. C., Hoerling, M. P., Peterson T. C. & Stott, P. A. (eds) Explaining extreme events of 2013 from a climate perspective. Bull. Am. Meteorol. Soc. 95, S1–S96 (2014).

    Article  Google Scholar 

  5. Trenberth, K. E. Attribution of climate variations and trends to human influences and natural variability. WIREs Clim. Change 2, 925–930 (2011).

    Article  Google Scholar 

  6. Trenberth, K. E. Framing the way to relate climate extremes to climate change. Climatic Change 115, 283–290 (2012).

    Article  Google Scholar 

  7. Wallace, J. M. Weather- and climate-related extreme events: Teachable moments. Eos 93, 120–121 (2012).

    Article  Google Scholar 

  8. Stott, P. et al. in Climate Science Serving Society (eds Asrar, G. R. & Hurrell, J. W.) 307–337 (Springer, 2013).

    Book  Google Scholar 

  9. Deser, C., Phillips, A., Bourdette, V. & Teng, H. Y. Uncertainty in climate change projections: The role of internal variability. Clim. Dynam. 38, 527–546 (2012).

    Article  Google Scholar 

  10. Deser, C., Phillips, A. S., Alexander, M. A. & Smoliak, B. V. Projecting North American climate over the next 50 years: Uncertainty due to internal variability. J. Clim. 27, 2271–2296 (2014).

    Article  Google Scholar 

  11. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  12. Trenberth, K. E. Atmospheric moisture residence times and cycling: Implications for rainfall rates with climate change. Climatic Change 39, 667–694 (1998).

    Article  Google Scholar 

  13. Trenberth, K. E., Dai, A., Rasmussen, R. M. & Parsons, D. B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 84, 1205–1217 (2003).

    Article  Google Scholar 

  14. Trenberth, K. E., Fasullo, J. T., Branstator, G. & Phillips, A. S. Seasonal aspects of the recent pause in surface warming. Nature Clim. Change 4, 911–916 (2014).

    Article  Google Scholar 

  15. Branstator, G. & Teng, H. Is AMOC more predictable than North Atlantic heat content? J. Clim. 27, 3537–3550 (2014).

    Article  Google Scholar 

  16. Seneviratne, S. I. et al. Investigating soil moisture–climate interactions in a changing climate: A review. Earth Sci. Rev. 99, 125–161 (2010).

    Article  CAS  Google Scholar 

  17. Trenberth, K. E. et al. Global warming and changes in drought. Nature Clim. Change 4, 17–22 (2014).

    Article  Google Scholar 

  18. Lyons, L., Discovery or fluke: Statistics in particle physics. Phys. Today 65, 45–51 (2012).

    Article  CAS  Google Scholar 

  19. Trenberth, K. E., Fasullo, J. & Smith, L. Trends and variability in column-integrated atmospheric water vapor. Clim. Dynam. 24, 741–758 (2005).

    Article  Google Scholar 

  20. February 2010: Snowmageddon, Blizzard of 2010 WINTER: Unprecedented Snowfall Impacts Region (PRESTO, 2010); http://go.nature.com/IBxDJD.

  21. Blake, E. S., Kimberlain, T. B., Berg, R. J., Cangialosi, J. P. & Beven, J. L. II Tropical Cyclone Report: Hurricane Sandy Report no. AL182012 (National Hurricane Center, 2013); http://go.nature.com/sjCrrH

    Google Scholar 

  22. Hurricane/Post-Tropical Cyclone Sandy, October 22–29, 2012 Service Assessment (NOAA, 2013); http://go.nature.com/BqlTxe

  23. Magnusson, L. et al. Evaluation of medium-range forecasts for hurricane Sandy. Mon. Weather Rev. 142, 1962–1981 (2014).

    Article  Google Scholar 

  24. Evans, A. D. & Falvey, R. J. Annual Tropical Cyclone Report 2013 (Naval Maritime Forecast Center/ Joint Typhoon Warning Center, 2013); http://go.nature.com/V9JpKu.

    Google Scholar 

  25. Lin, I-I., Pun, I-F. & Lien, C-C. 'Category-6' Supertyphoon Haiyan in global warming hiatus: Contribution from subsurface ocean warming. Geophys. Res. Lett. 41, 8547–8553 (2014).

    Article  Google Scholar 

  26. Trenberth, K. E. & Fasullo, J. T. An apparent hiatus in global warming? Earth's Future 1, 19–32 (2013).

    Article  Google Scholar 

  27. Trenberth, K. E., Fasullo, J. T. & Balmaseda, M. A. Earth's energy imbalance. J. Clim. 27, 3129–3144 (2014).

    Article  Google Scholar 

  28. Hoerling, M. et al. Northeast Colorado extreme rains interpreted in a climate change context. Bull. Am. Meteorol. Soc. 95 (Special issue), S15–S18 (2014).

    Article  Google Scholar 

  29. Brennan, C. Boulder researcher: 2013's flood-triggering rains not caused by climate change. Daily Camera (29 September 2014); http://go.nature.com/2y9zuO.

  30. Pasch, R. J. & Zelinsky, D. A. Hurricane Manuel EP132013 (National Hurricane Center, 2014); http://go.nature.com/8ORDI9.

    Google Scholar 

  31. Beven, J. L. II Hurricane Ingrid AL102013 (National Hurricane Center, 2014); http://go.nature.com/QzAQuL.

    Google Scholar 

  32. Dole, R. et al. Was there a basis for anticipating the 2010 Russian heat wave? Geophys. Res. Lett. 38, L06702 (2011).

    Article  Google Scholar 

  33. Rahmstorf, S. & Coumou, D. Increase of extreme events in a warming world, Proc. Natl Acad. Sci. USA 108, 17905–17909 (2011).

    Article  CAS  Google Scholar 

  34. Otto, F. E. L., Massey, N., van Oldenborgh, G. J., Jones, R. G. & Allen, M. R. Reconciling two approaches to attribution of the 2010 Russian heat wave. Geophys. Res. Lett. 39, L04702 (2012).

    Article  Google Scholar 

  35. Trenberth, K. E. & Fasullo, J. T. Climate extremes and climate change: The Russian heat wave and other climate extremes of 2010. J. Geophys. Res. 117, D17103 (2012).

    Article  Google Scholar 

  36. Seager, R. et al. Causes and Predictability of the 2011–14 California Drought (NOAA, 2014); http://go.nature.com/IBpoCA.

    Google Scholar 

  37. Diffenbaugh, N. S., Swain D. L. & Touma, D. Anthropogenic warming has increased drought risk in California. Proc. Natl Acad. Sci USA 112, 3931–3936 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The National Center for Atmospheric Research is sponsored by the National Science Foundation. This work is supported by DOE award DE-SC0012711. T.G.S. acknowledges the support provided through the Grantham Chair in Climate Science at the University of Reading.

Author information

Authors and Affiliations

Authors

Contributions

K.E.T. led the writing of the paper and conceived of the paper and figures. J.T.F analysed some data and contributed to two figures. All authors contributed to writing the manuscript.

Corresponding author

Correspondence to Kevin E. Trenberth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trenberth, K., Fasullo, J. & Shepherd, T. Attribution of climate extreme events. Nature Clim Change 5, 725–730 (2015). https://doi.org/10.1038/nclimate2657

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2657

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing