Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Rapid evolution of thermal tolerance in the water flea Daphnia

A Corrigendum to this article was published on 24 September 2015

This article has been updated

Abstract

Global climate is changing rapidly, and the degree to which natural populations respond genetically to these changes is key to predicting ecological responses1,2,3. So far, no study has documented evolutionary changes in the thermal tolerance of natural populations as a response to recent temperature increase. Here, we demonstrate genetic change in the capacity of the water flea Daphnia to tolerate higher temperatures using both a selection experiment and the reconstruction of evolution over a period of forty years derived from a layered dormant egg bank. We observed a genetic increase in thermal tolerance in response to a two-year ambient +4 °C selection treatment and in the genotypes of natural populations from the 1960s and 2000s hatched from lake sediments. This demonstrates that natural populations have evolved increased tolerance to higher temperatures, probably associated with the increased frequency of heat waves over the past decades, and possess the capacity to evolve increased tolerance to future warming.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Average critical thermal maxima for Daphnia clones from the selection experiment and from Felbrigg Hall Lake.
Figure 2: Average critical thermal maxima plotted against average adult size for clones from Felbrigg Hall Lake.

Similar content being viewed by others

Change history

  • 03 September 2015

    In the version of this Letter originally published, in Fig. 1a, the boxplot for the Ambient +4 °C treatment was incorrect. This error has been corrected in the online versions.

References

  1. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  2. Urban, M. C., De Meester, L., Vellend, M., Stoks, R. & Vanoverbeke, J. A crucial step toward realism: Responses to climate change from an evolving metacommunity perspective. Evol. Appl. 5, 154–167 (2012).

    Article  Google Scholar 

  3. Merilä, J. & Hendry, A. P. Climate change, adaptation, and phenotypic plasticity: The problem and the evidence. Evol. Appl. 7, 1–14 (2014).

    Article  Google Scholar 

  4. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

    Google Scholar 

  5. Bradshaw, W. E. & Holzapfel, C. M. Climate change—evolutionary response to rapid climate change. Science 312, 1477–1478 (2006).

    Article  CAS  Google Scholar 

  6. Parmesan, C. Ecological and evolutionary responses to recent climate change. Annu. Rev. Ecol. Evol. Syst. 37, 637–669 (2006).

    Article  Google Scholar 

  7. Davis, M. B., Shaw, R. G. & Etterson, J. R. Evolutionary responses to changing climate. Ecology 86, 1704–1714 (2005).

    Article  Google Scholar 

  8. Gilman, S. E., Urban, M. C., Tewksbury, J., Gilchrist, G. W. & Holt, R. D. A framework for community interactions under climate change. Trends Ecol. Evol. 25, 325–331 (2010).

    Article  Google Scholar 

  9. Easterling, D. R. et al. Climate extremes: Observations, modeling, and impacts. Science 289, 2068–2074 (2000).

    Article  CAS  Google Scholar 

  10. Angilletta, M. J. Thermal Adaptation–A Theoretical and Empirical Synthesis (Oxford Univ. Press, 2009).

    Book  Google Scholar 

  11. Pörtner, H. O. & Farrell, A. P. Physiology and climate change. Science 322, 690–692 (2008).

    Article  Google Scholar 

  12. Hoffmann, A. A., Anderson, A. & Hallas, R. Opposing clines for high and low temperature resistance in Drosophila melanogaster. Ecol. Lett. 5, 614–618 (2002).

    Article  Google Scholar 

  13. Helmuth, B., Kingsolver, J. G. & Carrington, E. Biophysics, physiological ecology, and climate change: Does mechanism matter? Annu. Rev. Physiol. 67, 177–201 (2005).

    Article  CAS  Google Scholar 

  14. Kristensen, T. N., Loeschcke, V. & Hoffmann, A. A. Can artificially selected phenotypes influence a component of field fitness? Thermal selection and fly performance under thermal extremes. Proc. R. Soc. B 274, 771–778 (2007).

    Article  Google Scholar 

  15. Huey, R. B. et al. Predicting organismal vulnerability to climate warming: Roles of behaviour, physiology and adaptation. Phil. Trans. R. Soc. B 367, 1665–1679 (2012).

    Article  Google Scholar 

  16. Chown, S. L. et al. Adapting to climate change: A perspective from evolutionary physiology. Clim. Res. 43, 3–15 (2010).

    Article  Google Scholar 

  17. Lampert, W. Daphnia: Development of a Model Organism in Ecology and Evolution Vol. 21 (International Ecology Institute, 2011).

    Google Scholar 

  18. Frisch, D. et al. A millennial-scale chronicle of evolutionary responses to cultural eutrophication in Daphnia. Ecol. Lett. 17, 360–368 (2014).

    Article  Google Scholar 

  19. Cousyn, C. et al. Rapid, local adaptation of zooplankton behavior to changes in predation pressure in the absence of neutral genetic changes. Proc. Natl Acad. Sci. USA 98, 6256–6260 (2001).

    Article  CAS  Google Scholar 

  20. Decaestecker, E. et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature 450, 870–873 (2007).

    Article  CAS  Google Scholar 

  21. Franks, S. J., Sim, S. & Weis, A. E. Rapid evolution of flowering time by an annual plant in response to a climate fluctuation. Proc. Natl Acad. Sci. USA 104, 1278–1282 (2007).

    Article  CAS  Google Scholar 

  22. Franks, S. J., Weber, J. J. & Aitken, S. N. Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7, 123–139 (2014).

    Article  Google Scholar 

  23. Mitchell, S. E. & Lampert, W. Temperature adaptation in a geographically widespread zooplankter, Daphnia magna. J. Evol. Biol. 13, 371–382 (2000).

    Article  Google Scholar 

  24. Yampolsky, L. Y., Schaer, T. M. M. & Ebert, D. Adaptive phenotypic plasticity and local adaptation for temperature tolerance in freshwater zooplankton. Proc. R. Soc. B 281, 20132744 (2013).

    Article  Google Scholar 

  25. Palumbi, S. R., Barshis, D. J., Traylor-Knowles, N. & Bay, R. A. Mechanisms of reef coral resistance to future climate change. Science 344, 895–898 (2014).

    Article  CAS  Google Scholar 

  26. van Asch, M., Salis, L., Holleman, L. J., van Lith, B. & Visser, M. E. Evolutionary response of the egg hatching date of a herbivorous insect under climate change. Nature Clim. Change 3, 244–248 (2013).

    Article  Google Scholar 

  27. Historic Station Data (Met Office, 2012); http://www.metoffice.gov.uk/climate/uk/stationdata

  28. Hairston, N. G. Jr et al. Rapid evolution revealed by dormant eggs. Nature 401, 446 (1999).

    Article  Google Scholar 

  29. Brakefield, P. M. Artificial selection and the development of ecologically relevant phenotypes. Ecology 84, 1661–1671 (2003).

    Article  Google Scholar 

  30. Van Doorslaer, W. et al. Local adaptation to higher temperatures reduces immigration success of genotypes from a warmer region in the water flea Daphnia. Glob. Change Biol. 15, 3046–3055 (2009).

    Article  Google Scholar 

  31. Ezard, T. H. G., Cote, S. D. & Pelletier, F. Eco-evolutionary dynamics: Disentangling phenotypic, environmental and population fluctuations. Phil. Trans. R. Soc. B 364, 1491–1498 (2009).

    Article  Google Scholar 

  32. Schoener, T. W. The newest synthesis: Understanding the interplay of evolutionary and ecological dynamics. Science 331, 426–429 (2011).

    Article  CAS  Google Scholar 

  33. Dillon, M. E., Wang, G. & Huey, R. B. Global metabolic impacts of recent climate warming. Nature 467, 704–706 (2010).

    Article  CAS  Google Scholar 

  34. Bellard, C., Bertelsmeier, C., Leadley, P., Thuiller, W. & Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 15, 365–377 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

A.N.G. is supported by the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT Vlaanderen). The mesocosm experiment at Liverpool was supported by the EU IP project EUROLIMPACS (EU Contract No. GOCE-CT-2003-505540), and the overall study was supported by KU Leuven Research Fund Excellence Center financing PF/2010/07 and by ERA-Net BiodivERsA project TIPPINGPOND, nationally funded by Belspo. T. H. Haileselasie kindly helped with the analysis of genetic differentiation using microsatellite markers. We thank the National Trust for access to Felbrigg Hall Lake and thanks also to R. Huey and T. Ceulemans for valuable comments on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

L.D.M. and A.N.G. designed the overall research project. B.M., D.A. and H.F. designed the climate experiment and W.V.D. and L.D.M. developed the evolutionary selection module. W.V.D. and H.F. carried out the selection experiment. T.A.D. and C.D.S. took and analysed the sediment cores and carried out palaeolimnological analyses. A.N.G., L.D.M. and J.V. developed the resurrection ecology experiment. A.N.G. hatched the eggs and carried out the standardized CTMax experiments. A.N.G. together with J.V. and B.V. carried out the statistical analyses with input from L.D.M. A.N.G. and L.D.M. wrote the manuscript. All authors contributed to editing the manuscript.

Corresponding author

Correspondence to A. N. Geerts.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geerts, A., Vanoverbeke, J., Vanschoenwinkel, B. et al. Rapid evolution of thermal tolerance in the water flea Daphnia. Nature Clim Change 5, 665–668 (2015). https://doi.org/10.1038/nclimate2628

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2628

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing