Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Representation of nitrogen in climate change forecasts

Subjects

The models used by the IPCC are yet to provide realistic predictions for nitrogen emissions from the land to the air and water. Natural isotopic benchmarks offer a simple solution to this emerging global imperative.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CLM-CN projections used by the IPCC versus natural isotopic benchmarks.

References

  1. Sutton, M. A. et al. (eds) The European Nitrogen Assessment (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  2. Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. et al.) 465–570 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  3. Wang, Y. P. & Houlton, B. Z. Geophys. Res. Lett. 36, L24403 (2009).

    Article  Google Scholar 

  4. Pinder R. et al. Biogeochemistry 114, 25–40 (2013).

    Article  CAS  Google Scholar 

  5. Galloway, J. N. et al. Biogeochemistry 70, 153–226 (2004).

    Article  CAS  Google Scholar 

  6. Vitousek, P. M. et al. Ecol. Appl. 7, 737–751 (1997).

    Google Scholar 

  7. Brink, C. et al. The European Nitrogen Assessment (eds Sutton, M. A. et al.) 513–540 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  8. Hungate, B., Dukes, J., Shaw, M., Luo, Y. & Field, C. Science 302, 1512–1513 (2003).

    Article  CAS  Google Scholar 

  9. Thornton, P. E., Lamarque, J-F., Rosenbloom, N. A. & Mahowald, N. M. Global Biogeochem. Cycles 21, GB4018 (2007).

    Article  Google Scholar 

  10. Amundson, R. et al. Glob. Biogeochem. Cycles 17, 1031 (2003).

    Article  Google Scholar 

  11. Houlton, B. Z. & Bai, E. Proc. Natl Acad. Sci. USA 106, 21713–21716 (2009).

    Article  CAS  Google Scholar 

  12. Bai, E., Houlton, B. Z. & Wang, Y. P. Biogeosciences 9, 3287–3304 (2012).

    Article  CAS  Google Scholar 

  13. Bouwman, A. F. et al. Glob. Biogeochem. Cycles 11, 561–588 (1997).

    Article  CAS  Google Scholar 

  14. Wang, C. et al. Nature Commun. 5, 4799 (2014).

    Article  CAS  Google Scholar 

  15. Martinelli, L. A. et al. Biogeochemistry 46, 45–65 (1999).

    CAS  Google Scholar 

  16. Hedin, L. O., Brookshire, E. N. J., Menge, D. N. L. & Barron, A. R. Annu. Rev. Ecol. Evol. System. 40, 613–635 (2009).

    Article  Google Scholar 

  17. Likens, G. E., Driscoll, C. T. & Buso, D. C. Science 272, 244–245 (1996).

    Article  CAS  Google Scholar 

  18. Perakis, S. S. & Hedin, L. O. Nature 415, 416–419 (2002).

    Article  Google Scholar 

  19. Thomas, R. Q., Zaehle, S., Templer, P. H. & Goodale, C. L. Glob. Change Biol. 19, 2986–2998 (2013).

    Article  Google Scholar 

  20. Koven, C. D. et al. Biogeosciences 10, 7109–7131 (2013).

    Article  CAS  Google Scholar 

  21. Bai, E. & Houlton, B. Z. Glob. Biogeochem. Cycles 23, GB2011 (2009).

    Article  Google Scholar 

  22. Gruber, N. & Galloway, J. N. Nature 451, 293–296 (2008).

    Article  CAS  Google Scholar 

  23. Vitousek, P.M., Menge, D. N. L., Reed, S.C. & Cleveland, C.C. Phil. Trans. R. Soc. B 368, 20130119. (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We thank W. Wieder and C. Koven for access to CLM-CN models. This work was supported by NSF grants EAR-1411,368 and DEB-1150,246, and the Andrew W. Mellon Foundation (to B.Z.H.).

Author information

Authors and Affiliations

Authors

Contributions

B.Z.H. designed the research and wrote the manuscript; A.R.M. and E.B. provided comments and edits. B.Z.H. and E.B. developed the nitrogen isotope model. A.R.M. prepared the figures and ran the CLM model against nitrogen isotopic benchmarks.

Corresponding author

Correspondence to Benjamin Z. Houlton.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houlton, B., Marklein, A. & Bai, E. Representation of nitrogen in climate change forecasts. Nature Clim Change 5, 398–401 (2015). https://doi.org/10.1038/nclimate2538

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2538

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing