Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

A temporary, moderate and responsive scenario for solar geoengineering

Abstract

The risks and benefits of solar geoengineering, or solar radiation management (SRM), depend on assumptions about its implementation. Claims that SRM will reduce precipitation, increase ocean acidification or deplete stratospheric ozone, or that it must be continued forever once started, are not inherent features of SRM; rather, they are features of common scenarios for its implementation. Most analyses assume, for example, that SRM would be used to stop the increase in global temperature or restore temperature to pre-industrial values. We argue that these are poor scenario choices on which to base policy-relevant judgements about SRM. As a basis for further analysis, we provide a scenario that is temporary in that its end point is zero SRM, is moderate in that it offsets only half of the growth in anthropogenic climate forcing and is responsive in that it recognizes that the amount of SRM will be adjusted in light of new information.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the SRM scenario for an RCP4.5 emissions profile.
Figure 2: The rationale for moderate SRM.

Similar content being viewed by others

References

  1. Robock, A. 20 reasons why geoengineering may be a bad idea. Bull. Atom. Sci. 64, 14–18 (2008).

    Article  Google Scholar 

  2. Bala, G., Duffy, P. B. & Taylor, K. E. Impact of geoengineering schemes on the global hydrological cycle. Proc. Natl Acad. Sci. USA 105, 7664–7669 (2008).

    Article  CAS  Google Scholar 

  3. Kleidon, A. & Renner, M. A simple explanation for the sensitivity of the hydrological cycle to surface temperature and solar radiation and its implications for global climate change. Earth Syst. Dynam. 4, 455–465 (2013).

    Article  Google Scholar 

  4. Nordhaus, W. A Question of Balance: Weighing the Options on Global Warming Policies (Yale Univ. Press, 2008).

    Google Scholar 

  5. Keith, D. W. & Parker, A. The fate of an engineered planet. Sci. Am. 308, 34–36 (2013).

    Article  Google Scholar 

  6. Meinshausen, M., Raper, S. C. B. & Wigley, T. M. L. Emulating coupled atmosphere–ocean and carbon cycle models with a simpler model, MAGICC6. Part 1: Model description and calibration. Atmos. Chem. Phys. 11, 1417–1456 (2011).

    Article  CAS  Google Scholar 

  7. Kravitz, B. et al. The Geoengineering Model Intercomparison Project (GeoMIP). Atmos. Sci. Lett. 12, 162–167 (2011).

    Article  Google Scholar 

  8. MacMartin, D. G., Keith, D. W., Kravitz, B. & Caldeira, K. Management of trade-offs in geoengineering through optimal choice of non-uniform radiative forcing. Nature Clim. Change 3, 365–368 (2013).

    Article  CAS  Google Scholar 

  9. MacMartin, D. G., Kravitz, B., Keith, D. W. & Jarvis A. J. Dynamics of the couple human-climate system resulting from closed-loop control of solar geoengineering. Clim. Dyn. 43, 243–258 (2014).

    Article  Google Scholar 

  10. MacMartin, D. G., Caldeira, K. & Keith, D. W. Solar geoengineering to limit rates of change, Phil. Trans. R. Soc. A 372, 20140134 (2014).

    Article  Google Scholar 

  11. Smith, S. J. & Rasch, P. J. The long-term policy context for solar radiation management. Clim. Change 121, 487–497 (2013).

    Article  Google Scholar 

  12. Moreno-Cruz, J., Ricke, K. & Keith, D. W. A simple model to account for regional inequalities in the effectiveness of solar radiation management. Clim. Change 110, 649–668 (2011).

    Article  Google Scholar 

  13. Kravitz, B. et al. A multi-model assessment of regional climate disparities caused by solar geoengineering. Environ. Res. Lett. 9, http://dx.doi.org/10.1088/1748–9326/9/7/074013 (2014).

    Article  Google Scholar 

  14. Weitzman, M. What is the damages function for global warming—and what difference might it make? Clim. Change Econ. 1, 57–69 (2010).

    Article  Google Scholar 

  15. Goes, M., Tuana, N. & Keller, K. The economics (or lack thereof) of aerosol geoengineering. Clim. Change 109, 719–744 (2011).

    Article  Google Scholar 

  16. Lempert, R. J., Schlesinger, M. E., Bankes, S. C. & Andronova, N. G. The impacts of climate variability on near-term policy choices and the value of information. Clim. Change 45, 129–161 (2000).

    Article  Google Scholar 

  17. Anderson, J. G., Wilmouth, D. M., Smith, J. B. & Sayres, D. S. UV dosage levels in summer: Increased risk of ozone loss from convectively injected water vapor. Science 337, 835–839 (2012).

    Article  CAS  Google Scholar 

  18. MacMynowski, D. G., Keith, D. W., Caldeira, K. & Shin, H-J. Can we test geoengineering? Energy Environ. Sci. 4, 5044–5052 (2011).

    Article  Google Scholar 

  19. Diffenbaugh, N. S. & Field, C. B. Changes in ecologically critical terrestrial climate conditions. Science 341, 486–492 (2013).

    Article  CAS  Google Scholar 

  20. Schloss, C. A., Nuñez, T. A. & Lawler, J. J. Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc. Natl Acad. Sci. USA 109, 8606–8611 (2012).

    Article  CAS  Google Scholar 

  21. Wigley, T. M. L. A combined mitigation/geoengineering approach to climate stabilization. Science 314, 452–454 (2006).

    Article  CAS  Google Scholar 

  22. Matthews, H. D. & Caldeira, K. Transient climate-carbon simulations of planetary geoengineering. Proc. Natl Acad. Sci. USA 104, 9949–9954 (2007).

    Article  CAS  Google Scholar 

  23. Stocker, T. F. & Schmittner, A. Influence of CO2 emission rates on the stability of the thermohaline circulation. Nature 388, 862–865 (1997).

    Article  CAS  Google Scholar 

  24. Eliseev, A. V., Chernokulsky, A. V., Karpenko, A. A. & Mokhov, I. I. Global warming mitigation by sulphur loading in the stratosphere: dependence of required emissions on allowable residual warming rate. Theor. Appl. Climatol. 101, 67–81 (2010).

    Article  Google Scholar 

  25. Pierce, J. R., Weisenstein, D. K., Heckendorn, P., Peter, T. & Keith, D. W. Efficient formation of stratospheric aerosol for climate engineering by emission of condensable vapor from aircraft. Geophys. Res. Lett. 37, L18805 (2010).

    Article  Google Scholar 

  26. McClellan, J., Keith, D. W. & Apt, J. Cost analysis of stratospheric albedo modification delivery systems. Environ. Res. Lett. 7, 034019 (2012).

    Article  Google Scholar 

  27. Heckendorn, P. et al. The impact of geoengineering aerosols on stratospheric temperature and ozone. Environ. Res. Lett. 4, 045108 (2009).

    Article  Google Scholar 

  28. English, J. M., Toon, O. B. & Mills, M. J. Microphysical simulations of sulfur burdens from stratospheric sulfur geoengineering. Atmos. Chem. Phys. 12, 4775–4793 (2012).

    Article  CAS  Google Scholar 

  29. Blackstock, J. J. et al. Climate Engineering Responses to Climate Emergencies (Novim, 2009); http://arxiv.org/pdf/0907.5140

    Google Scholar 

  30. Geels, F. W. From sectoral systems of innovation to socio-technical systems: Insights about dynamics and change from sociology and institutional theory. Res. Policy 33, 897–920 (2004).

    Article  Google Scholar 

  31. Jones, C. A fast ocean GCM without flux adjustments. J. Atm. Ocean Technol. 20, 1857–1868 (2003).

    Article  Google Scholar 

  32. Rinsland, C. P. et al. Post-Mount Pinatubo eruption ground-based infrared stratospheric column measurements of HNO3, NO, and NO2 and their comparison with model calculations. J. Geophys. Res. 108, 4437 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David W. Keith.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

A temporary, moderate and responsive scenario for solar geoengineering (PDF 285 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keith, D., MacMartin, D. A temporary, moderate and responsive scenario for solar geoengineering. Nature Clim Change 5, 201–206 (2015). https://doi.org/10.1038/nclimate2493

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2493

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing