Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming

Abstract

The Greenland ice sheet has been one of the largest contributors to global sea-level rise over the past 20 years, accounting for 0.5 mm yr−1 of a total of 3.2 mm yr−1. A significant portion of this contribution is associated with the speed-up of an increased number of glaciers in southeast and northwest Greenland. Here, we show that the northeast Greenland ice stream, which extends more than 600 km into the interior of the ice sheet, is now undergoing sustained dynamic thinning, linked to regional warming, after more than a quarter of a century of stability. This sector of the Greenland ice sheet is of particular interest, because the drainage basin area covers 16% of the ice sheet (twice that of Jakobshavn Isbræ) and numerical model predictions suggest no significant mass loss for this sector, leading to an under-estimation of future global sea-level rise. The geometry of the bedrock and monotonic trend in glacier speed-up and mass loss suggests that dynamic drawdown of ice in this region will continue in the near future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in surface elevations obtained using ICESat, ATM, LVIS and ENVISAT data (Supplementary Section 1.0).
Figure 2: Surface speed, mass loss rates and climate data.
Figure 3: Surface elevation change rates in northeast Greenland using aerial photographs, ICESat, ATM, LVIS and ENVISAT data.
Figure 4: Calving front positions, bed and velocity profiles along the main flow line of NG and ZI.
Figure 5: Sea ice concentration along the northeast Greenland coast.

References

  1. Van den Broeke, M. et al. Partitioning recent greenland mass loss. Science 326, 984–986 (2009).

    Article  CAS  Google Scholar 

  2. Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters. Nature Geosci. 1, 659–664 (2008).

    Article  CAS  Google Scholar 

  3. Thomas, R. H. et al. Investigation of surface melting and dynamic thinning on Jakobshavn Isbræ, Greenland. J. Glaciol. 49, 231–239 (2003).

    Article  Google Scholar 

  4. Rignot, E., Box, J. E., Burgess, E. & Hanna, E. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett. 10.1029/2008GL035417 (2008).

  5. Pritchard, H. D., Arthern., R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    Article  CAS  Google Scholar 

  6. Shepherd, A. et al. A reconciled estimate of ice-sheet mass balance. Science 338, 1183–1189 (2013).

    Article  Google Scholar 

  7. Kjær, K. H. et al. Aerial photographs reveal late-20th-century dynamic ice loss in northwestern Greenland. Science 337, 569–573 (2012).

    Article  Google Scholar 

  8. Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

    Article  CAS  Google Scholar 

  9. Stearns, L. A. & Hamilton, G. S. Rapid volume loss from two east Greenland outlet glaciers quantified using repeat stereo satellite imagery. Geophys. Res. Lett. 34, L05503 (2007).

    Article  Google Scholar 

  10. Luckman, A., Murray, T., de Lange, R. & Hanna, E. Rapid and synchronous ice-dynamic changes in east Greenland. Geophys. Res. Lett. 33, L03503 (2006).

    Article  Google Scholar 

  11. Howat, I. M. et al. Mass balance of Greenland’s three largest outlet glaciers, 2000–2010. Geophys. Res. Lett. 38, L12501 (2011).

    Article  Google Scholar 

  12. Motyka, R. J., Fahnestock, M. & Truffer, M. Volume change of Jakobshavn Isbræ, West Greenland: 1985–1997–2007. J. Glaciol. 56, 635–646 (2010).

    Article  Google Scholar 

  13. Bjørk, A. A. et al. An aerial view of 80 years of climate-related glacier fluctuations in southeast Greenland. Nature Geosci. 5, 427–432 (2012).

    Article  Google Scholar 

  14. Khan, S. A. et al. Elastic uplift in southeast Greenland due to rapid ice mass loss. Geophys. Res. Lett. 34, L21701 (2007).

    Article  Google Scholar 

  15. Nick, F. M. et al. The response of Petermann Glacier, Greenland, to large calving events, and its future stability in the context of atmospheric and oceanic warming. J. Glaciol. 10.3189/2012JoG11J242 (2012).

  16. Sasgen, I. et al. Timing and origin of recent regional ice-mass loss in Greenland. Earth Planet. Sc. Lett. 333–334, 29–303 (2012).

    Google Scholar 

  17. Bamber, J. L. et al. A new bed elevation dataset for Greenland. Cryosphere 7, 499–510 (2013).

    Article  Google Scholar 

  18. Joughin, I. et al. Seasonal to decadal scale variations in the surface velocity of Jakobshavn Isbrae, Greenland: Observation and model-based analysis. J. Geophys. Res. 117, F02030 (2012).

    Article  Google Scholar 

  19. Thomas, R. H. The dynamics of marine ice sheets. J. Glaciol. 24, 167–177 (1979).

    Article  CAS  Google Scholar 

  20. Weertman, J. Stability of the junction of an ice sheet and an ice shelf. J. Glaciol. 13, 3–11 (1974).

    Article  Google Scholar 

  21. Schoof, C. Ice sheet grounding line dynamics: Steady states, stability and hysteresis. J. Geophys. Res. 112, F03S28 (2007).

    Article  Google Scholar 

  22. Reeh, N., Thomsen, H., Higgins, A. K. & Weidick, A. Sea ice and the stability of north and northeast Greenland floating glaciers. Ann. Glaciol. 33, 474–480 (2001).

    Article  Google Scholar 

  23. Joughin, I., Fahnestock, M., MacAyeal, D., Bamber, J. L. & Goginensi, P. Observation and analysis of ice flow in the largest Greenland ice stream. J. Geophys. Res. 106, 34021–34034 (2001).

    Article  Google Scholar 

  24. Thomsen, H. H. et al. The Nioghalvfjerdsfjorden Glacier project, north–east Greenland: A study of ice sheet response to climatic change. Geol. Greenland Survey Bull. 176, 95–103 (1997).

    Google Scholar 

  25. Seroussi, H. et al. Ice flux divergence anomalies on 79 North Glacier, Greenland. Geophys. Res. Lett. 38, L09501 (2011).

    Article  Google Scholar 

  26. Rignot, E. J. et al. North and northeast Greenland ice discharge from satellite radar interferometry. Science 276, 934–937 (1997).

    Article  CAS  Google Scholar 

  27. Krabill, W. B. IceBridge ATM L2 Icessn Elevation, Slope, and Roughness, [1993–2012]. Boulder, Colorado, USA (NASA Distributed Active Archive Center at the National Snow and Ice Data Center, http://nsidc.org/data/ilatm2.html (2012).

    Google Scholar 

  28. Zwally, H. J. et al. GLAS/ICESat L2 Antarctic and Greenland Ice Sheet Altimetry Data V031. Boulder, Colorado (NASA Distributed Active Archive Center at the National Snow and Ice Data Center, (2011).

    Google Scholar 

  29. Blair, B. & Hofton, M. IceBridge LVIS L2 Geolocated Ground Elevation and Return Energy Quartiles, Boulder, Colorado USA (NASA Distributed Active Archive Center at the National Snow and Ice Data Center, http://nsidc.org/data/ilvis2.html (2012).

    Google Scholar 

  30. ESA, ENVISAT RA2/MWR Product Handbook (European Space Agency, (2007).

    Google Scholar 

  31. GST Ground control for 1:150,000 scale aerials, Greenland (Danish Ministry of the Environment, Danish Geodata Agency, http://www.gst.dk/Emner/Referencenet/Referencesystemer/GR96/ (2013).

  32. Ettema, J. et al. Climate of the Greenland ice sheet using a high-resolution climate model–Part 1: Evaluation. Cryosphere 4, 511–527 (2010).

    Article  Google Scholar 

  33. Joughin, I., Abdalati, W. & Fahnestock, M. Large fluctuations in speed on Greenland’s Jakobshavn Isbræ glacier. Nature 432, 608–610 (2004).

    Article  CAS  Google Scholar 

  34. Reeh, N., Bøggild, C. E. & Oerter, H. Surge of Storstrømmen, a large outlet glacier from the inland ice of north-east Greenland. Grønl. Geol. Unders. Rapp. 162, 201–209 (1994).

    Google Scholar 

  35. Thomas, R., Frederick, E., Krabill, W., Manizade, S. & Martin, C. Recent changes on Greenland outlet glaciers. J. Glaciol. 55, 147–162 (2009).

    Article  Google Scholar 

  36. Khan, S. A., Wahr, J., Bevis, M., Velicogna, I. & Kendrick, E. Spread of ice mass loss into northwest Greenland observed by GRACE and GPS. Geophys. Res. Lett. 37, L06501 (2010).

    Article  Google Scholar 

  37. Bevis, M. et al. Bedrock displacements in Greenland manifest ice mass variations, climate cycles and climate change. Proc. Natl Acad. Sci. USA 109, 11944–11948 (2012).

    Article  CAS  Google Scholar 

  38. Box, J. E. & Decker, D. T. Greenland marine-terminating glacier area changes: 2000–2010. Ann. Glaciol. 37, 91–98 (2011).

    Article  Google Scholar 

  39. Joughin, I., Smith, B. E., Howat, I. M., Scambos, T. A. & Moon, T. Greenland flow variability from ice-sheet-wide velocity mapping. J. Glaciol. 56, 415–430 (2010).

    Article  Google Scholar 

  40. Comiso, J. Bootstrap Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS. Version 2. Boulder, Colorado USA (NASA DAAC at the National Snow and Ice Data Center, (1999) updated 2012.

    Google Scholar 

  41. Cappelen, J. Weather Observations from Greenland 1958–2012 Technical Report 13–11 (Ministry of Climate and Energy, 2012).

  42. Ingleby, B. & Huddleston, M. Quality control of ocean temperature and salinity profiles–historical and real-time data. J. Mar. Syst. 65, 158–175 (2007).

    Article  Google Scholar 

  43. Beszczynska-Moller, A., Fahrbach, E., Schauer, U. & Hansen, E. Variability in Atlantic water temperature and transport at the entrance to the Arctic Ocean. ICES J. Mar. Sci. 69, 1997–2010 (2012).

    Article  Google Scholar 

  44. Nick, F. et al. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497, 235–238 (2013).

    Article  CAS  Google Scholar 

  45. Price, S. F., Payne, A. J., Howat, I. M. & Smith, B. E Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA 108, 8978–8983 (2011).

    Article  CAS  Google Scholar 

  46. Gillet-Chaulet, F. et al. Greenland ice sheet contribution to sea-level rise from a new-generation ice-sheet model. Cryosphere 6, 1561–1576 (2012).

    Article  Google Scholar 

  47. Yin, J. et al. Different magnitudes of projected subsurface ocean warming around Greenland and Antarctica. Nature Geosci. 4, 524–528 (2011).

    Article  CAS  Google Scholar 

  48. AMAP, The Greenland Ice Sheet in a Changing Climate: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) (Arctic Monitoring and Assessment Programme, (2011).

    Google Scholar 

Download references

Acknowledgements

S.A.K., K.H.K. and I.S.M. were supported by the Danish Research Council (FNU). K.H.K. acknowledges support from Danish National Research Foundation (DNRF94-GeoGenetics). N.K.L. acknowledges support from the Danish Research Council no. 272-09-0095 and the VILLUM Foundation.

Author information

Authors and Affiliations

Authors

Contributions

S.A.K. led the writing of the paper and conceived the study. S.A.K. analysed ENVISAT, ICESat, ATM, LVIS data surface and subsurface ocean temperatures. S.A.K. analysed GPS data. J.W. analysed GRACE data. A.A.B. analysed air temperature and glacier front positions. M.R.v.d.B. analysed SMB data. N.J.K. analysed 1978 aerial photographs. All authors contributed to data interpretation and writing of the manuscript.

Corresponding author

Correspondence to Shfaqat A. Khan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, S., Kjær, K., Bevis, M. et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nature Clim Change 4, 292–299 (2014). https://doi.org/10.1038/nclimate2161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2161

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing