Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Global bioenergy resources

Abstract

Using biomass to provide energy services is a strategically important option for increasing the global uptake of renewable energy. Yet the practicalities of accelerating deployment are mired in controversy over the potential resource conflicts that might occur, particularly over land, water and biodiversity conservation. This calls into question whether policies to promote bioenergy are justified. Here we examine the assumptions on which global bioenergy resource estimates are predicated. We find that there is a disjunct between the evidence that global bioenergy studies can provide and policymakers' desire for estimates that can straightforwardly guide policy targets. We highlight the need for bottom-up assessments informed by empirical studies, experimentation and cross-disciplinary learning to better inform the policy debate.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Estimates for the contribution of energy crops, wastes and forest biomass to future energy supply.
Figure 2: Essential preconditions for increasing levels of biomass production.
Figure 3: The range of yield and land area estimates included in global energy crop scenarios.

Similar content being viewed by others

References

  1. Energy Technology Perspectives 2010: Scenarios and Strategies to 2050 (IEA, 2010).

  2. Sims, R. H. et al. in Climate Change 2007: Mitigation of Climate Change (eds Metz, B., Davidson, O. R., Bosch, P. R., Dave, R. & Meyer, L. A.) Ch. 4 (IPCC, Cambridge Univ. Press, 2007).

    Google Scholar 

  3. Chum, H. et al. in Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) Ch. 2 (IPCC, Cambridge Univ. Press, 2011).

    Google Scholar 

  4. World Energy Outlook (IEA, 2012).

  5. Hunt, S. & Drigo, R. A Review of the Current State of Bioenergy Development in G8+5 Countries (FAO, 2007).

    Google Scholar 

  6. Faaij, A. P. C. Bio-energy in Europe: Changing technology choices. Energy Policy 34, 322–342 (2006).

    Article  Google Scholar 

  7. Searchinger, T. et al. Use of U.S. croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  CAS  Google Scholar 

  8. Eide, A. The Right to Food and the Impact of Liquid Biofuels (Agrofuels) (FAO, 2008).

    Google Scholar 

  9. Agostini, A., Giuntoli, J. & Boulamanti, A. Carbon Accounting of Forest Bioenergy — Conclusions and Recommendations from a Critical Literature Review (European Commission JRC, 2013).

    Google Scholar 

  10. Creutzig, F. et al. Reconciling top down and bottom-up modellling on future bioenergy deployment. Nature Clim. Change 2, 320–327 (2012).

    Article  Google Scholar 

  11. Lynd, L. R. et al. A global conversation about energy from biomass: The continental conventions of the global sustainable bioenergy project. Interface Focus 1, 271–279 (2011).

    Article  Google Scholar 

  12. Sorrell, S. Improving the evidence base for energy policy: The role of systematic reviews. Energy Policy 35, 1858–1871 (2007). Examines how systematic review methods can be applied to energy policy and can improve the quality of evidence provided to policymakers.

    Article  Google Scholar 

  13. Slade, R., Saunders, R., Gross, R. & Bauen, A. Energy from Biomass: The Size of the Global Resource (Imperial College Centre for Energy Policy and Technology & UK Energy Research Centre, 2011).

    Google Scholar 

  14. Thrän, D., Seidenberger, T., Zeddies, J. & Offermann, R. Global biomass potentials — Resources, drivers and scenario results. Energy Sustain. Dev. 14, 200–205 (2010).

    Article  Google Scholar 

  15. Berndes, G., Hoogwijn, M. & van den Broek, R. The contribution of biomass in the future global energy supply: A review of 17 studies. Biomass Bioenergy 25, 1–28 (2003).

    Article  Google Scholar 

  16. Lysen, E. et al. Biomass Assessment: Assessment of Global Biomass Potentials and their Links to Food, Water, Biodiversity, Energy Demand and Economy (MNP, 2008).

    Google Scholar 

  17. Cannell, M. G. R. Carbon sequestration and biomass energy offset: Theoretical, potential and achievable capacities globally, in Europe and the UK. Biomass Bioenergy 24, 97–116 (2003).

    Article  Google Scholar 

  18. Bauen, A., Woods, J. & Hailes, R. Bioelectricity Vision: Achieving 15% of Electricity from Biomass in OECD Countries by 2020 (E4tech Limited, 2004).

    Google Scholar 

  19. Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenergy 3, 299–312 (2011).

    Article  CAS  Google Scholar 

  20. De Vries, B. J. M., van Vuuren, D. P. & Hoogwijk, M. M. Renewable energy sources: Their global potential for the first-half of the 21st century at a global level: An integrated approach. Energy Policy 35, 2590–2610 (2007).

    Article  Google Scholar 

  21. Erb, K-H. et al. Eating the Planet: Feeding and Fuelling the World Sustainably, Fairly and Humanely — A Scoping Study (Institute of Social Ecology & PIK Potsdam, 2009).

    Google Scholar 

  22. Field, C. B., Campbell, J. E. & Lobell, D. B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 23, 65–72 (2008).

    Article  Google Scholar 

  23. Fischer, G. & Schrattenholzer, L. Global bioenergy potentials through 2050. Biomass Bioenergy 20, 151–159 (2001).

    Article  Google Scholar 

  24. Haberl, H., Beringer, T., Bhattacharya, S. C., Erb, K-H. & Hoogwijk, M. The global technical potential of bio-energy in 2050 considering sustainability constraints Curr. Opin. Environ. Sust. 2, 394–403 (2010).

    Article  Google Scholar 

  25. Hall, D. O., Rosillo-Calle, F., Williams, R. H. & Woods, J. in Renewable Energy: Sources for Fuels and Electricity (eds Johansson, T. B. et al.) 593–651 (Island, 1993).

    Google Scholar 

  26. Hoogwijk, M. On the Global and Regional Potential of Renewable Energy Sources (RIVM, 2004).

    Google Scholar 

  27. Hoogwijk, M., Faaij, A. & Eickhout, B. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenergy 29, 225–257 (2005). Archetypal and highly influential global biomass potential study using the IMAGE integrated assessment model.

    Article  Google Scholar 

  28. Hoogwijk, M. et al. Exploration of the ranges of the global potential of biomass for energy. Biomass Bioenergy 25, 119–133 (2003).

    Article  Google Scholar 

  29. World Energy Outlook 2008 (IEA, 2008).

  30. Johansson, T. B., Kelly, H., Reddy, A. K. N. & Williams, R. H. in Renewable Energy: Sources for Fuels and Electricity (eds Johansson, T. B. et al.) 593–651 (Island, 1993).

    Google Scholar 

  31. Moreira, J. R. Global biomass energy potential. Mitig. Adapt. Strat. Glob. Change 11, 313–342 (2006).

    Article  Google Scholar 

  32. Agricultural Outlook 2010–2019 (FAO, 2010).

  33. Rokityanskiy, D. et al. Geographically explicit global modelling of land-use change, carbon sequestration, and biomass supply. Technol. Forecast. Soc. Change 74, 1057–1082 (2007).

    Article  Google Scholar 

  34. Sims, R., Hastings, A. & Schlamadinger, B. Energy crops: Current status and future prospects. Glob. Change Biol. 12, 2054–2076 (2006).

    Article  Google Scholar 

  35. Smeets, E., Faaij, A., Lewandowski, I. & Turkenburg, W. A bottom-up assessment and review of global bio-energy potentials to 2050. Progr. Energy Combust. Sci. 33, 56–106 (2007).

    Article  CAS  Google Scholar 

  36. World Energy Assessment: Energy and the Challenge of Sustainability Ch. 5 (UNDP, 2000).

  37. Wolf, J., Bindraban, P. S., Luijten, J. C. & Vleeshouwers, L. M. Exploratory study on the land area required for global food supply and the potential global production of bioenergy. Agr. Syst. 76, 841–861 (2003).

    Article  Google Scholar 

  38. Schubert, R. et al. Future Bioenergy and Sustainable Land Use (A Report for the German Advisory Council on Global Change (WBGU) (Earthscan, 2009). An integrated vision of how sustainable bioenergy might be implemented globally and risks minimized.

    Google Scholar 

  39. Yamamoto, H., Fujino, J. & Yamaji, K. Evaluation of bioenergy potential with a multi-regional global-land-use-and-energy model. Biomass Bioenergy 21, 185–203 (2001).

    Article  Google Scholar 

  40. Yamamoto, H., Yamaji, K. & Fujino, J. Evaluation of bioenergy resources with a global land use and energy model formulated with SD technique. Appl. Energy 63, 101–113 (1999).

    Article  Google Scholar 

  41. Yamamoto, H., Yamaji, K. & Fujino, J. Scenario analysis of bioenergy resources and CO2 emissions with a global land use and energy model. Appl. Energy 66, 325–337 (2000).

    Article  CAS  Google Scholar 

  42. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth's terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12947 (2007).

    Article  CAS  Google Scholar 

  43. Smith, K., Zhao, M. & Running, S. Global bioenergy capacity as constrained by observed biospheric productivity rates. BioScience 62, 911–922 (2012). Describes how satellite-derived global net primary productivity data places a constraint on plausible bioenergy potential estimates.

    Article  Google Scholar 

  44. Johnston, M., Foley, J. A., Holloway, T., Kucharik, C. & Monfreda, C. Resetting global expectations from agricultural biofuels. Environ. Res. Lett. 4, 014004 (2009).

    Article  Google Scholar 

  45. Haberl, H. et al. Bioenergy: how much can we expect for 2050? Environ. Res. Lett. 8, 031004 (2013).

    Article  Google Scholar 

  46. Running, S. A measurable planetary boundary for the biosphere. Science 337, 1458–1459 (2012).

    Article  CAS  Google Scholar 

  47. Cassman, K. G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

    Article  CAS  Google Scholar 

  48. World Agriculture: Towards 2015/2030 — An FAO Perspective (ed. Bruinsma, J.) Ch. 4 (Earthscan, 2003)

  49. Alexandratos, N. et al. World Agriculture: Towards 2030/2050. Interim Report — Prospects for Food, Nutrition, Agriculture and Major Commodity Groups (FAO, 2006)

    Google Scholar 

  50. Fischer, R. A., Byerlee, D. & Edmeades, G. O. in FAO Expert Meeting on How to Feed the World in 2050, Rome (24–26 June, 2009) (FAO, 2009); http://www.fao.org/docrep/012/ak542e/ak542e00.htm

    Google Scholar 

  51. Foresight: The Future of Food and Farming: Challenges and Choices for Global Sustainability Final Project Report (The Government Office for Science, 2011).

  52. Godfray, H. C. J. et al. Food security: The challenge of feeding 9 billion people. Science 327, 812–818 (2010).

    Article  CAS  Google Scholar 

  53. Jaggard, K. W., Qi, A. & Ober, E. S. Possible changes to arable crop yields by 2050. Phil. Trans. R. Soc. B 365, 2835–2851 (2010).

    Article  Google Scholar 

  54. Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture (The Royal Society, 2009).

  55. International Assessment of Agricultural Knowledge, Science and Technology for Development Synthesis Report (Island, 2009).

  56. Foley, J. A. et al. Solutions for a cultivated planet. Nature 478, 337–342 (2011). Explores how the needs to increase global food production can be reconciled with shrinking agriculture's environmental footprint.

    Article  CAS  Google Scholar 

  57. Alexandratos, N. & Bruinsma, J. World Agriculture Towards 2030/ 2050 — The 2012 Revision (FAO, 2012).

    Google Scholar 

  58. Smil, V. in Yields of Farmed Species: Constraints and Opportunities in the 21st Century (eds Sylvester-Bradley, R. & Wiseman, J.) 1–14 (Nottingham Univ. Press, 2005).

    Google Scholar 

  59. Tilman, D. et al. Forecasting agriculturally driven global environmental change. Science 292, 281–284 (2001).

    Article  CAS  Google Scholar 

  60. Rudel, T. K. et al. Agricultural intensification and changes in cultivated areas, 1970–2005. Proc. Natl Acad. Sci. USA 106, 20675–20680 (2009).

    Article  CAS  Google Scholar 

  61. Ewers, R., Scharlemann, J., Balmford, A. & Green, R. Do increases in agricultural yield spare land for nature? Glob. Change Biol. 15, 1716–1726 (2009). Shows that the relationship between crop intensification and land sparing is weak.

    Article  Google Scholar 

  62. Villoria, N., Golub, A., Byerlee, D. & Stevenson, J. Will yield improvements on the forest frontier reduce greenhouse gas emissions? A global analysis of oil palm. Am. J. Agr. Econ. 95, 1301–1308 (2013).

    Article  Google Scholar 

  63. Coping with Water Scarcity: Challenge of the Twenty-first Century (United Nations, 2007).

  64. Berndes, G. Bioenergy and water: The implications of large-scale bioenergy production for water use and supply. Glob. Environ. Change 12, 253–271 (2002).

    Article  Google Scholar 

  65. Legg, B. J. in Yields of Farmed Species: Constraints and Opportunities in the 21st Century (eds Sylvester-Bradley, R. & Wiseman, J.) 31–50 (Nottingham Univ. Press, 2005).

    Google Scholar 

  66. Sylvester-Bradley, R., Foulkes, J. & Reynolds, M. in Yields of Farmed Species: Constraints and Opportunities in the 21st Century (eds Sylvester-Bradley, R. & Wiseman, J) 233–260 (Nottingham Univ. Press, 2005).

    Google Scholar 

  67. Berndes, G. Water Demand for Global Bioenergy Production: Trends, Risks and Opportunities (WBGU, 2008).

    Google Scholar 

  68. Dale, B. E., Bals, B. D., Kim, S. & Eranki, P. Biofuels done right: Land efficient animal feeds enable large environmental and energy benefits. Envrion. Sci. Tech. 44, 8385–8389 (2010).

    Article  CAS  Google Scholar 

  69. Ariza-Montobbio, P., Lele, S., Kallis, G. & Martinez-Alier, J. The political ecology of Jatropha plantations for biodiesel in Tamil Nadu, India. J Peasant Stud. 37, 875–897 (2010). Highlights the risks and complexities of putting bioenergy policy into practice.

    Article  Google Scholar 

  70. Wicke, B. et al. The global technical and economic potential of bioenergy from salt-affected soils. Energy Environ. Sci. 4, 2669–2681 (2011).

    Article  Google Scholar 

  71. Wicke, B., Smeets, E., Watson, H. & Faaij, A. The current bioenergy production potential of semi-arid and arid regions in sub-Saharan Africa. Biomass Bioenergy 7, 2773–2786 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

We thank our steering group for their comments and insights: G. Hammond, G. Berndes, R. Arnold, J-F. Dallemand, D. Eggar, K. Jaggard, A. Nevill, S. Tooze, D. Turley, K. White and M. Workman. We are grateful to the UK Energy Research Centre, UK Department for Energy and Climate Change, and UK Committee on Climate Change whose support made this work possible. This paper is a contribution to Imperial College's Grand Challenges in Ecosystems and the Environment initiative.

Author information

Authors and Affiliations

Authors

Contributions

R.S. Designed and planned the work, undertook the analysis and wrote the manuscript. A.B. and R.G. contributed to the design, drafting and review.

Corresponding author

Correspondence to Raphael Slade.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Tables S1–S4

Summary of global biomass potential estimates less than 100EJ (PDF 481 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slade, R., Bauen, A. & Gross, R. Global bioenergy resources. Nature Clim Change 4, 99–105 (2014). https://doi.org/10.1038/nclimate2097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing