Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Feasible mitigation actions in developing countries

Abstract

Energy use is not only crucial for economic development, but is also the main driver of greenhouse-gas emissions. Developing countries can reduce emissions and thrive only if economic growth is disentangled from energy-related emissions. Although possible in theory, the required energy-system transformation would impose considerable costs on developing nations. Developed countries could bear those costs fully, but policy design should avoid a possible 'climate rent curse', that is, a negative impact of financial inflows on recipients' economies. Mitigation measures could meet further resistance because of adverse distributional impacts as well as political economy reasons. Hence, drastically re-orienting development paths towards low-carbon growth in developing countries is not very realistic. Efforts should rather focus on 'feasible mitigation actions' such as fossil-fuel subsidy reform, decentralized modern energy and fuel switching in the power sector.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CO2 emissions and gross domestic product (GDP) per capita.
Figure 2: Relationship between CO2 emissions per capita and gross domestic product (GDP) or household income in India, Indonesia and the Philippines.
Figure 3: Mitigation in different emissions reduction scenarios.
Figure 4: Financial inflows and institutional quality.

Similar content being viewed by others

References

  1. Olivier, J. G. J., Janssens-Maenhout, G. & Peters, J. A. H. W. Trends in Global CO2 Emissions: 2013 Report (PBL Netherlands Environmental Assessment Agency, 2013); www.pbl.nl/en

    Google Scholar 

  2. International Energy Agency World Energy Outlook 2011 (IEA, 2011).

  3. Luderer, G. et al. The economics of decarbonizing the energy system — results and insights from the RECIPE model intercomparison. Climatic Change 14, 9–37 (2011).

    Google Scholar 

  4. Organisation for Economic Co-operation and Development Towards Green Growth (OECD, 2011); www.oecd.org/dataoecd/37/34/48224539.pdf

  5. United Nations Environment Programme Towards a Green Economy: Pathways to Sustainable Development and Poverty Eradication (OECD, 2011); www.unep.org/greeneconomy/greeneconomyreport/tabid/29846/default.aspx

  6. World Bank Inclusive Green Growth: The Pathway to Sustainable Development (World Bank, 2012); https://openknowledge.worldbank.org/bitstream/handle/10986/6058/9780821395516.pdf?sequence=1

  7. Stern, N. A Blueprint for a Safer Planet: How to Manage Climate Change and Create a New Era of Progress and Prosperity (Bodley Head, 2009).

    Google Scholar 

  8. World Bank World Development Report (World Bank, 2010).

  9. Grübler, A. Transitions in Energy Use (International Institute for Applied Systems Analysis, 2004).

    Google Scholar 

  10. Schäfer, A. Structural change in energy use. Energ. Policy 33, 429–437 (2005).

    Article  Google Scholar 

  11. Costa, L., Rybski, D. & Kropp, J. P. A human development framework for CO2 reductions. PLoS ONE 6, e29262 (2011).

    Article  CAS  Google Scholar 

  12. Steinberger, J. K. & Roberts, J. T. From constraint to sufficiency: the decoupling of energy and carbon from human needs, 1975–2005. Ecol. Econ. 70, 425–433 (2010).

    Article  Google Scholar 

  13. Steckel, J. C., Brecha, R. J., Jakob, M., Strefler, J. & Luderer, G. Development without energy? Assessing future scenarios of energy consumption in developing countries. Ecol. Econ. 90, 53–67 (2013).

    Article  Google Scholar 

  14. Pereira, M. G., Sena, J. A., Freitas, M. A. V. & da Silva, N. F. Evaluation of the impact of access to electricity: a comparative analysis of South Africa, China, India and Brazil. Renew. Sust. Energ. Rev. 15, 1427–1441 (2011).

    Article  Google Scholar 

  15. Minx, J. C. et al. A 'carbonizing dragon': China's fast growing CO2 emissions revisited. Environ. Sci. Technol. 45, 9144–9153 (2011).

    Article  CAS  Google Scholar 

  16. Steckel, J. C., Jakob, M., Marschinski, R. & Luderer, G. From carbonization to decarbonization? Past trends and future scenarios for China's CO2 emissions. Energ. Policy 39, 3443–3455 (2011).

    Article  CAS  Google Scholar 

  17. Davis, S. J. & Caldeira, K. Consumption-based accounting of CO2 emissions. Proc. Natl Acad. Sci. USA 107, 5687–5692 (2010).

    Article  CAS  Google Scholar 

  18. Peters, G. P., Minx, J. C., Weber, C. L. & Edenhofer, O. Growth in emission transfers via international trade from 1990 to 2008. Proc. Natl Acad. Sci. USA 108, 8903–8908 (2011).

    Article  CAS  Google Scholar 

  19. Jakob, M. & Marschinski, R. Interpreting trade-related CO2 emission transfers. Nature Clim. Change 3, 19–23 (2012).

    Article  Google Scholar 

  20. Jakob, M., Haller, M. & Marschinski, R. Will history repeat itself? Economic convergence and convergence in energy use patterns. Energ. Econ. 34, 95–104 (2012).

    Article  Google Scholar 

  21. Jakob, M. & Steckel, J. C. How climate change mitigation could harm development in poor countries. WIREs Clim. Change 5, 161–168 (2014).

    Article  Google Scholar 

  22. Collier, P. & Venables, A. J. Greening Africa? Technologies, endowments and the latecomer effect. Energ. Econ. 34, S75–S84 (2012).

    Article  Google Scholar 

  23. Grunewald, N., Harteisen, M., Lay, J., Minx, J. & Renner, S. The Carbon Footprint of Indian Households (International Association for Research in Income and Wealth, 2012); www.iariw.org/papers/2012/GrunewaldPaper.pdf

    Google Scholar 

  24. Irfany, I. Affluence and Emission Trade-offs: Evidence from Indonesian Household Carbon Footprint (Courant Research Centre: Poverty, Equity and Growth - Discussion Papers, No. 161, Univ. of Göttingen, 2014); https://www.econstor.eu/dspace/bitstream/10419/100103/1/791342972.pdf

    Google Scholar 

  25. Seriño, M. N. V. Do Philippine Households Lead a Carbon Intensive Lifestyle? (Courant Research Centre: Poverty, Equity and Growth-Discussion Papers No. 158; 2014); http://www.econstor.eu/handle/10419/100100

    Google Scholar 

  26. Grunewald, N., Klasen, S., Martínez-Zarzoso, I. & Muris, C. Income Inequality and Carbon Emissions (Courant Research Centre PEG, 2011); http://ideas.repec.org/p/got/gotcrc/092.html

    Google Scholar 

  27. Jakob, M., Steckel, J. C., Flachsland, C. & Baumstark, L. Climate finance for developing country mitigation: Blessing or curse? Clim. Dev. http://dx.doi.org/10.1080/17565529.2014.934768

  28. Olbrisch, S., Haites, E., Savage, M., Dadhich, P. & Shrivastava, M. K. Estimates of incremental investment for and cost of mitigation measures in developing countries. Clim. Policy 11, 970–986 (2011).

    Article  Google Scholar 

  29. Ekholm, T., Krey, V., Pachauri, S. & Riahi, K. Determinants of household energy consumption in India. Energ. Policy 38, 5696–5707 (2010).

    Article  Google Scholar 

  30. IPCC Climate Change 2007 Mitigation of Climate Change (eds Metz, B. et al.) (Cambridge Univ. Press, 2007).

  31. Klein, D. et al. The value of bioenergy in low stabilization scenarios: an assessment using REMIND-MAgPIE. Climatic Change 123, 705–718 (2014).

    Article  Google Scholar 

  32. Pfeiffer, B. & Mulder, P. Explaining the diffusion of renewable energy technology in developing countries. Energ. Econ. 40, 285–296 (2013).

    Article  Google Scholar 

  33. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O. et al.) (Cambridge Univ. Press, 2011).

  34. Edenhofer, O., Seyboth, K., Creutzig, F. & Schlömer, S. On the sustainability of renewable energy sources. Annu. Rev. Environ. Resourc. 38, 169–200 (2013).

    Article  Google Scholar 

  35. Joskow, P. L. Comparing the costs of intermittent and dispatchable electricity generating technologies. Am. Econ. Rev. 101, 238–41 (2011).

    Article  Google Scholar 

  36. Ueckerdt, F., Hirth, L., Luderer, G. & Edenhofer, O. System LCOE: What are the costs of variable renewables? Energy 63, 61–75 (2013);

    Article  Google Scholar 

  37. Staub-Kaminski, I., Zimmer, A., Jakob, M. & Marschinski, R. Climate policy in practice: a typology of obstacles and implications for integrated assessment modeling. Clim. Change Econ. 5, 1440004 (2014).

    Article  Google Scholar 

  38. Casillas, C. E. & Kammen, D. M. The energy–poverty–climate nexus. Science 330, 1181–1182 (2010).

    Article  CAS  Google Scholar 

  39. Barnes, D. F. & Floor, W. M. Rural energy in developing countries: a challenge for economic development. Annu. Rev. Energ. Environ. 21, 497–530 (1996).

    Article  Google Scholar 

  40. Lay, J., Ondraczek, J. & Stoever, J. Renewables in the energy transition: evidence on solar home systems and lighting fuel choice in Kenya. Energ. Econ. 40, 350–359 (2013).

    Article  Google Scholar 

  41. Demailly, D. & Verley, P. The Aspirations of the Green Industrial Revolution: A Historical Perspective (IDDRI, 2013); www.iddri.org/Publications/Les-espoirs-de-la-revolution-industrielle-verte-une-perspective-historique

    Google Scholar 

  42. Jakob, M., Luderer, G., Steckel, J., Tavoni, M. & Monjon, S. Time to act now? Assessing the costs of delaying climate measures and benefits of early action. Climatic Change 114, 79–99 (2011).

    Article  Google Scholar 

  43. Kalkuhl, M., Edenhofer, O. & Lessmann, K. Learning or lock-in: optimal technology policies to support mitigation. Resourc. Energ. Econ. 34, 1–23 (2012).

    Article  Google Scholar 

  44. Mattoo, A. & Subramanian, A. Equity in climate change: an analytical review. World Dev. 40, 1083–1097 (2012).

    Article  Google Scholar 

  45. German Advisory Council on Global Change Solving the Climate Dilemma: The Budget Approach (WBGU, 2009).

  46. Nordhaus, W. To tax or not to tax: alternative approaches to slowing global warming. Rev. Environ. Econ. Policy 1, 26–42 (2007).

    Article  Google Scholar 

  47. Sachs, J. D. & Warner, A. M. Natural Resource Abundance and Economic Growth (National Bureau of Economic Research, 1995); http://ideas.repec.org/p/nbr/nberwo/5398.html

    Book  Google Scholar 

  48. van der Ploeg, F. Natural resources: Curse or blessing? J. Econ. Lit. 49, 366–420 (2011).

    Article  Google Scholar 

  49. Kornek, U., Steckel, J. C. & Edenhofer, O. The Climate Rent Curse: New Challenges for Burden Sharing (Working Paper, Potsdam Institute for Climate Impact Research, 2013); https://www.pik-potsdam.de/members/steckel/publications/kornek-etal-wp.pdf

    Google Scholar 

  50. Kaufmann, D., Kraay, A. & Mastruzzi, M. The Worldwide Governance Indicators: Methodology and Analytical Issues (World Bank, 2010); http://ideas.repec.org/p/wbk/wbrwps/5430.html

    Google Scholar 

  51. Worldwide Governance Indicators Worldwide Governance Indicators (WGI, 2012); govindicators.org

  52. Weikard, H-P. Cartel stability under optimal sharing rules. Manch. Sch. 77, 575–593 (2009).

    Article  Google Scholar 

  53. Bowen, A., Campiglio, E. & Tavoni, M. A Macroeconomic Perspective on Climate Change Mitigation: Meeting the Financing Challenge (Grantham Research Institute on Climate Change and the Environment, 2013); http://ideas.repec.org/p/lsg/lsgwps/wp122.html

    Google Scholar 

  54. Klasen, S. The efficiency of equity. Rev. Polit. Econ. 20, 257–274 (2008).

    Article  Google Scholar 

  55. Rodrik, D. Where did all the growth go? External shocks, social conflict, and growth collapses. J. Econ. Growth 4, 385–412 (1999).

    Article  Google Scholar 

  56. Robinson, J. A. & Acemoglu, D. Political losers as a barrier to economic development. Am. Econ. Rev. 90, 126–130 (2000).

    Article  Google Scholar 

  57. Townshend, T. et al. How national legislation can help to solve climate change. Nature Clim. Change 3, 430–432 (2013).

    Article  Google Scholar 

  58. Ostrom, E. Polycentric systems for coping with collective action and global environmental change. Glob. Environ. Change 20, 550–557 (2010).

    Article  Google Scholar 

  59. Dubash, N. K. The politics of climate change in India: narratives of equity and cobenefits. WIREs Clim. Change 4, 191–201 (2013).

    Article  Google Scholar 

  60. Zimmer, A., Jakob, M. & Steckel, J. What Motivates Vietnam to Strive for a Low Carbon Economy? An Explorative Case Study on the Drivers of Climate Policy in a Developing Country (International Conference on Public Policy, 2013); www.icpublicpolicy.org/IMG/pdf/panel_46_s2_zimmer.pdf

    Google Scholar 

  61. Kahn Ribeiro, S. et al. in Global Energy Assessment — Toward a Sustainable Future (eds Johansson, T. B. et al.) 575–648 (Cambridge Univ. Press, 2012); www.globalenergyassessment.org

    Book  Google Scholar 

  62. Parry, I. W. H. & Small, K. A. Does Britain or the United States have the right gasoline tax? Am. Econ. Rev. 95, 1276–1289 (2005).

    Article  Google Scholar 

  63. Creutzig, F. & He, D. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transport. Res. D 14, 120–131 (2009).

    Article  Google Scholar 

  64. Organisation for Economic Co-operation and Development & International Energy Agency OECD-IEA Fossil Fuel Subsidies and Other Support (OECD, 2014); www.oecd.org/site/tadffss

  65. Davis, L. W. The Economic Cost of Global Fuel Subsidies (National Bureau of Economic Research, 2013); http://ideas.repec.org/p/nbr/nberwo/19736.html.

    Book  Google Scholar 

  66. Sterner, T. Fuel Taxes and the Poor: The Distributional Effects of Gasoline Taxation and Their Implications for Climate Policy (Johns Hopkins Univ. Press, 2011).

    Google Scholar 

  67. Lay, J., Renner, S. & Schleicher, M. Distributional Implications of Energy Subsidy Reform in Indonesia (GIGA, 2014).

    Google Scholar 

  68. Brons, M., Nijkamp, P., Pels, E. & Rietveld, P. A meta-analysis of the price elasticity of gasoline demand. A SUR approach. Energ. Econ. 30, 2105–2122 (2008).

    Article  Google Scholar 

  69. Strand, J. Political Economy Aspects of Fuel Subsidies: A Conceptual Framework (World Bank, 2013); http://ideas.repec.org/p/wbk/wbrwps/6392.html

    Book  Google Scholar 

  70. Clements, B., Coady, D., Fabrizio, S., Gupta, S. & Shang, B. Energy subsidies: How large are they and how can they be reformed? Econ. Energ. Environ. Policy 3, http://dx.doi.org/10.5547/2160-5890.3.1.bcle (2014).

  71. Rao, N. D. Kerosene subsidies in India: when energy policy fails as social policy. Energ. Sust. Dev. 16, 35–43 (2012).

    Article  Google Scholar 

  72. International Monetary Fund Energy Subsidy Reform: Lessons and Implications (IMF, 2013); www.imf.org/external/np/pp/eng/2013/012813.pdf

  73. World Bank Implementing Energy Subsidy Reforms: Evidence from Developing Countries (World Bank, 2012); http://dx.doi.org/10.1596/978-0-8213-9561-5

  74. Pachauri, S. et al. Pathways to achieve universal household access to modern energy by 2030. Environ. Res. Lett. 8, 024015 (2013).

    Article  Google Scholar 

  75. Detchon, R. & Van Leeuwen, R. Bring sustainable energy to the developing world. Nature 508, 309–311 (2014).

    Article  Google Scholar 

  76. Modi, V., McDade, S., Lallement, D. & Saghir, J. Energy Services for the Millennium Development Goals (Energy Sector Management Assistance Programme, United Nations Development Programme, 2005).

    Google Scholar 

  77. Rogelj, J., McCollum, D. L. & Riahi, K. The UN's 'Sustainable Energy for All' initiative is compatible with a warming limit of 2 °C. Nature Clim. Change 3, 545–551 (2013).

    Article  Google Scholar 

  78. Schnitzer, D. et al. Microgrids for Rural Electrification: A Critical Review of Best Practices Based on Seven Case Studies (United Nations Foundation, 2014).

    Google Scholar 

  79. Brauer, M. et al. Exposure assessment for estimation of the global burden of disease attributable to outdoor air pollution. Environ. Sci. Technol. 46, 652–660 (2011).

    Article  Google Scholar 

  80. Sheehan, P., Cheng, E., English, A. & Sun, F. China's response to the air pollution shock. Nature Clim. Change 4, 306–309 (2014).

    Article  Google Scholar 

  81. Nemet, G. F., Holloway, T. & Meier, P. Implications of incorporating air-quality co-benefits into climate change policymaking. Environ. Res. Lett. 5, 014007 (2010).

    Article  Google Scholar 

  82. West, J. J. et al. Co-benefits of mitigating global greenhouse gas emissions for future air quality and human health. Nature Clim. Change 3, 885–889 (2013).

    Article  CAS  Google Scholar 

  83. McCollum, D. L., Krey, V. & Riahi, K. An integrated approach to energy sustainability. Nature Clim. Change 1, 428–429 (2011).

    Article  Google Scholar 

  84. Tubiello, F. N. et al. The FAOSTAT 19 database of greenhouse gas emissions from agriculture. Environ. Res. Lett. 8, 035019 (2013).

    Article  Google Scholar 

  85. Kissinger, G., Herold, M. & de Sy, V. Drivers of Deforestation and Forest Degradation: A Synthesis Report for REDD+ Policymakers (Lexeme Consulting, 2012).

    Google Scholar 

  86. United Nations Environment Programme The Emissions Gap Report 2013 (UNEP, 2013); www.unep.org/pdf/UNEPEmissionsGapReport2013.pdf

  87. Smith, P. et al. Greenhouse gas mitigation in agriculture. Phil. Trans. R. Soc. B 363, 789–813 (2008).

    Article  CAS  Google Scholar 

  88. International Rice Research Institute Smart Water Technique for Rice (IRRI, 2013).

  89. Chen, Y. & Whalley, A. Green infrastructure: the effects of urban rail transit on air quality. AEJ Econ. Policy 4, 58–97 (2012).

    CAS  Google Scholar 

  90. Creutzig, F., Baiocchi, G., Bierkandt, R., Pichler, P-P. & Seto, K. A global typology of urban energy use and potentials for an urbanization mitigation wedge. Urban Climate (in the press).

  91. Baghdadi, L., Martinez-Zarzoso, I. & Zitouna, H. Are RTA agreements with environmental provisions reducing emissions? J. Int. Econ. 90, 378–390 (2013).

    Article  Google Scholar 

  92. Prakash, A. & Potoski, M. Racing to the bottom? Trade, environmental governance, and ISO 14001. Am. J. Polit. Sci. 50, 350–364 (2006).

    Article  Google Scholar 

  93. Freund, C. & Ornelas, E. Regional trade agreements. Annu. Rev. Econ. 2, 139–166 (2010).

    Article  Google Scholar 

  94. Jakob, M., Steckel, J. C. & Edenhofer, O. Consumption- versus production-based emission policies. Annu. Rev. Resourc. Econ. http://dx.doi.org/10.1146/annurev-resource-100913-012342 (2014).

  95. Urpelainen, J. A model of dynamic climate governance: dream big, win small. Int. Environ. Agreem. 13, 107–125 (2013).

    Article  Google Scholar 

  96. United Nations Framework Convention on Climate Change Decision 2/CP.15 (UNFCCC, 2009); https://unfccc.int/meetings/copenhagen_dec_2009/items/5262.php

  97. Carbon Dioxide Information Analysis Centre Fossil-Fuel CO2 Emissions by Nation (CDIAC, 2013); http://cdiac.ornl.gov

  98. Maddison, A. Statistics on World Population, GDP and Per Capita GDP, 1–2008 AD (Univ. of Groningen, 2010); http://www.ggdc.net/maddison/oriindex.htm

    Google Scholar 

  99. Krey, V. & Clarke, L. Role of renewable energy in climate mitigation: a synthesis of recent scenarios. Clim. Policy 11, 1131–1158 (2011).

    Article  Google Scholar 

  100. World Bank World Development Indicators (World Bank, 2014); http://data.worldbank.org/data-catalog/world-development-indicators

Download references

Acknowledgements

The authors thank F. Creutzig, S. Hallegatte, N. Rao, E. Somanathan and T. Venables for useful comments and suggestions. Funding from the German Federal Ministry of Education and Research (funding code 01UV1008A, EntDekEn) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Contributions

M.J., J.C.S., S.K., J.L. and O.E. were involved in conceptualizing the paper. J.C.S. and M.J. analysed data, conceptualized and produced graphs. N.G. and I.M-Z. performed analyses on inequality issues and S.R. provided household-level analyses. M.J., J.C.S., J.L., S.K., I.M-Z. and S.R. wrote the paper.

Corresponding authors

Correspondence to Michael Jakob or Jan Christoph Steckel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 449 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jakob, M., Steckel, J., Klasen, S. et al. Feasible mitigation actions in developing countries. Nature Clim Change 4, 961–968 (2014). https://doi.org/10.1038/nclimate2370

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2370

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing