Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deep-ocean contribution to sea level and energy budget not detectable over the past decade

Abstract

As the dominant reservoir of heat uptake in the climate system, the world’s oceans provide a critical measure of global climate change. Here, we infer deep-ocean warming in the context of global sea-level rise and Earth’s energy budget between January 2005 and December 2013. Direct measurements of ocean warming above 2,000 m depth explain about 32% of the observed annual rate of global mean sea-level rise. Over the entire water column, independent estimates of ocean warming yield a contribution of 0.77 ± 0.28 mm yr−1 in sea-level rise and agree with the upper-ocean estimate to within the estimated uncertainties. Accounting for additional possible systematic uncertainties, the deep ocean (below 2,000 m) contributes −0.13 ± 0.72 mm yr−1 to global sea-level rise and −0.08 ± 0.43 W m−2 to Earth’s energy balance. The net warming of the ocean implies an energy imbalance for the Earth of 0.64 ± 0.44 W m−2 from 2005 to 2013.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global mean sea-level variations.
Figure 2: Global mean steric sea-level change contributions from different layers of the ocean.
Figure 3: Ocean heat content change above 2,000 m depth.

Similar content being viewed by others

References

  1. IPCC Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) (Cambridge Univ. Press, 2013).

  2. Church, J. A. & White, N. J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 32, 585–602 (2011).

    Article  Google Scholar 

  3. Cazenave, A. & Llovel, W. Contemporary sea level rise. Annu. Rev. Mar. Sci. 2, 145–173 (2010).

    Article  Google Scholar 

  4. Church, J. A. et al. Revising the Earth’s sea-level and energy budgets from 1961 to 2008. Geophys. Res. Lett. 38, L18601 (2011).

    Article  Google Scholar 

  5. Willis, J. K., Chambers, D. P. & Nerem, R. S. Assessing the globally averaged sea level budget on seasonal to interannual time scales. J. Geophys. Res. 113, C06015 (2008).

    Article  Google Scholar 

  6. Cazenave, A. et al. Sea level budget over 2003–2008: A reevaluation from GRACE space gravimetry, satellite altimetry and Argo. Glob. Planet. Change 65, 83–88 (2009).

    Article  Google Scholar 

  7. Leuliette, E. W. & Miller, L. Closing the sea level rise budget with altimetry, Argo, and GRACE. Geophys. Res. Lett. 36, L04608 (2009).

    Article  Google Scholar 

  8. Llovel, W., Guinehut, S. & Cazenave, A. Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass. Ocean Dyn. 60, 1193–1204 (2010).

    Article  Google Scholar 

  9. Leuliette, E. W. & Willis, J. K. Balancing the sea level budget. Oceanography 24, 122–129 (2011).

    Article  Google Scholar 

  10. Chen, J. L., Wilson, C. R. & Tapley, B. D. Contribution of ice sheet and mountain glacier melt to recent sea level rise. Nature Geosci. 6, 549–552 (2013).

    Article  CAS  Google Scholar 

  11. Llovel, W., Fukumori, I. & Meyssignac, B. Depth-dependent temperature change contributions to global mean thermosteric sea level rise from 1960 to 2010. Glob. Planet. Change 101, 113–118 (2013).

    Article  Google Scholar 

  12. Abraham, J. P. et al. A review of global ocean temperature observations: Implications for ocean heat content estimates and climate change. Rev. Geophys. 51, 450–483 (2013).

    Article  Google Scholar 

  13. Purkey, S. G. & Johnson, G. C. Warming of global abyssal and deep Southern Ocean waters between the 1990s and 2000s: Contributions to global heat and sea level rise budgets. J. Clim. 23, 6336–6351 (2010).

    Article  Google Scholar 

  14. Kouketsu, S. et al. Deep ocean heat content changes estimated from observation and reanalysis product and their influence on sea level change. J. Geophys. Res. 116, C03012 (2011).

    Article  Google Scholar 

  15. Trenberth, K. E. & Fasullo, J. T. Tracking Earth’s energy. Science 328, 316–317 (2010).

    Article  CAS  Google Scholar 

  16. Balmaseda, M. A., Trenberth, K. E. & Källén, E. Distinctive climate signals in reanalysis of global ocean heat content. Geophys. Res. Lett. 40, 1754–1759 (2013).

    Article  Google Scholar 

  17. Nerem, R. S., Chambers, D. P., Choe, C. & Mitchum, G. T. Estimating mean sea level change from the TOPEX and Jason Altimeter Missions. Mar. Geodesy 33, 435–446 (2010).

    Article  Google Scholar 

  18. Llovel, W. et al. Terrestrial waters and sea level variations on interannual time scale. Glob. Planet. Change 75, 76–82 (2011).

    Article  Google Scholar 

  19. Boening, C., Willis, J. K., Landerer, F. W., Nerem, R. S. & Fasullo, J. The 2011 La Niña: So strong, the oceans fell. Geophys. Res. Lett. 39, L19602 (2012).

    Google Scholar 

  20. Fasullo, J. T., Boening, C., Landerer, F. W. & Nerem, R. S. Australia’s unique influence on global sea level in 2010–2011. Geophys. Res. Lett. 40, 4368–4373 (2013).

    Article  Google Scholar 

  21. Cazenave, A. et al. The rate of sea-level rise. Nature Clim. Change 4, 358–361 (2014).

    Article  Google Scholar 

  22. Leuliette, E. W. & Scharroo, R. Integrating Jason-2 into a multiple-altimeter climate data record. Mar. Geodesy 33, 504–517 (2010).

    Article  Google Scholar 

  23. Lyman, J. M. & Johnson, G. C. Estimating global ocean heat content changes in the upper 1800 m since 1950 and the influence of climatology choice. J. Clim. 27, 1945–1957 (2014).

    Article  Google Scholar 

  24. Levitus, S. et al. World ocean heat content and thermosteric sea level change (0–2000 m), 1955–2010. Geophys. Res. Lett. 39, L10603 (2012).

    Article  Google Scholar 

  25. Chambers, D. P., Wahr, J., Tamisiea, M. E. & Nerem, R. S. Ocean mass from GRACE and glacial isostatic adjustment. J. Geophys. Res. 115, B11415 (2010).

    Article  Google Scholar 

  26. Altamimi, Z., Collilieux, X. & Métivier, L. ITRF2008: An improved solution of the International Terrestrial Reference Frame. J. Geod. 85, 457–473 (2011).

    Article  Google Scholar 

  27. Von Schuckmann, K. & Le Traon, P-Y. How well can we derive Global Ocean Indicators from Argo data? Ocean Sci. 7, 783–791 (2011).

    Article  Google Scholar 

  28. Loeb, N. et al. Observed changes in top-of-the-atmosphere radiation and upper-ocean heating consistent within uncertainty. Nature Geosci. 5, 110–113 (2012).

    Article  CAS  Google Scholar 

  29. Mitchum, G. An improved calibration of satellite altimetric heights using tide gauge sea levels with adjustment for land motion. Mar. Geodesy 23, 145–166 (2000).

    Article  Google Scholar 

  30. Johnson, G. C. & Chambers, D. P. Ocean bottom pressure seasonal cycles and decadal trends from GRACE Release-05: Ocean circulation implications. J. Geophys. Res. 118, 4228–4240 (2013).

    Article  Google Scholar 

  31. Swenson, S., Chambers, D. & Wahr, J. Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res. 113, B08410 (2008).

    Article  Google Scholar 

  32. Geruo, A., Wahr, J. & Zhong, S. J. Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to glacial isostatic adjustment in Antarctica and Canada. Geophys. J. Int. 192, 557–572 (2013).

    Article  Google Scholar 

  33. Cheng, M. K., Tapley, B. D. & Ries, J. C. Deceleration in the Earth’s oblateness. J. Geophys. Res. 118, 740–747 (2013).

    Article  Google Scholar 

  34. Roemmich, D. & Gilson, J. The 2004–2008 mean and annual cycle of temperature, salinity and steric height in the global ocean from the Argo program. Prog. Oceanogr. 82, 81–100 (2009).

    Article  Google Scholar 

  35. Hosoda, S. et al. A monthly mean dataset of global oceanic temperature and salinity derived from Argo float observations. JAMSTEC Rep. Res. Dev. 8, 47–59 (2008).

    Article  Google Scholar 

  36. Wong, A. P. S. et al. Argo Quality Control Manual, Version 2.31 Ar-um-04-01 (2008)

Download references

Acknowledgements

W.L. was supported by Oak Ridge Associated Universities through the NASA Postdoctoral Program (NPP) carried out by JPL, Caltech and is now supported by UCLA-JIFRESSE. The temperature and salinity data were collected and made freely available by the International Argo Program and the national programs that contribute to it. (www.argo.ucsd.edu, http://argo.jcommops.org). The Argo Program is part of the Global Ocean Observing System. The research of J.K.W., F.W.L. and I.F. was carried out at JPL, Caltech under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Contributions

W.L. and J.K.W. conceived the study. W.L. conducted the calculations and led the writing of the manuscript. F.W.L. computed the ocean mass time series inferred by GRACE data. All authors contributed to the analysis and participated in its discussion.

Corresponding author

Correspondence to W. Llovel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Llovel, W., Willis, J., Landerer, F. et al. Deep-ocean contribution to sea level and energy budget not detectable over the past decade. Nature Clim Change 4, 1031–1035 (2014). https://doi.org/10.1038/nclimate2387

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate2387

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing