Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Anthropogenic impact on Earth’s hydrological cycle

Abstract

The global hydrological cycle is a key component of Earth’s climate system. A significant amount of the energy the Earth receives from the Sun is redistributed around the world by the hydrological cycle in the form of latent heat flux1. Changes in the hydrological cycle have a direct impact on droughts, floods, water resources and ecosystem services. Observed land precipitation2,3,4 and global river discharges5 do not show an increasing trend as might be expected in a warming world6,7,8,9,10,11. Here we show that this apparent discrepancy can be resolved when the effects of tropospheric aerosols are considered. Analysing state-of-the-art climate model simulations, we find for the first time that there was a detectable weakening of the hydrological cycle between the 1950s and the 1980s, attributable to increased anthropogenic aerosols, after which the hydrological cycle recovered as a result of increasing greenhouse gas concentrations. The net result of these two counter-acting effects is an insignificant trend in the global hydrological cycle, but the individual influence of each is substantial. Reductions in air pollution have already shown an intensification in the past two decades12,13,14 and a further rapid increase in precipitation could be expected if the current trend continues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and modelled mean temperature and precipitation for 1901–2011.
Figure 2: Comparison of precipitation temperature relationships from model simulations with separate forcing factors.
Figure 3: Energy budget analysis of model simulations to show contributions of different physical processes.
Figure 4: Scaling factors and attributable trends from optimal fingerprinting.

Similar content being viewed by others

References

  1. Trenberth, K. E., Fasullo, J. T. & Kiehl, J. Earth’s global energy budget. Bull. Am. Meteorol. Soc. 90, 311–323 (2009).

    Article  Google Scholar 

  2. Peterson, T. C. & Vose, R. S. An overview of the global historical climatology network temperature database. Bull. Am. Meteorol. Soc. 78, 2837–2849 (1997).

    Article  Google Scholar 

  3. Mitchell, T. D. & Jones, P. D. An improved method of constructing a database of monthly climate observations and associated high-resolution grids. Int. J. Climatol. 25, 693–712 (2005).

    Article  Google Scholar 

  4. Wild, M. Enlightening global dimming and brightening. Bull. Am. Meteorol. Soc. 93, 27–37 (2012).

    Article  Google Scholar 

  5. Dai, A., Qian, T., Trenberth, K. E. & Milliman, J. D. Changes in continental freshwater discharge from 1948 to 2004. J. Clim. 22, 2773–2791 (2009).

    Article  Google Scholar 

  6. Manabe, S. & Wetherald, R. T. The effects of doubling the CO2 concentration on the climate of a general circulation model. J. Atmos. Sci. 32, 3–15 (1975).

    Article  CAS  Google Scholar 

  7. Mitchell, J. F. B., Wilson, C. A. & Cunnington, W. M. On CO2 climate sensitivity and model dependence of results. Q. J. R. Meteorol. Soc. 113, 293–332 (1987).

    Article  CAS  Google Scholar 

  8. Allen, M. R. & Ingram, W. J. Constraints on the future changes in the hydrological cycle. Nature 419, 224–232 (2002).

    CAS  Google Scholar 

  9. Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 10 (Cambridge Univ. Press, 2007).

    Google Scholar 

  10. Trenberth, K. E. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 3 (Cambridge Univ. Press, 2007).

    Google Scholar 

  11. Morice, C. P., Kennedy, J. J., Rayner, N. A. & Jones, P. D. Quantifying uncertainties in global and regional temperature change using an ensemble of observational estimates: The HadCRUT4 dataset. J. Geophys. Res. 117, D08101 (2012).

    Article  Google Scholar 

  12. Wild, M. et al. From dimming to brightening: Decadal changes in solar radiation at Earth’s surface. Science 308, 847–850 (2005).

    Article  CAS  Google Scholar 

  13. Stern, D. I. Reversal of the trend in global anthropogenic sulphur emissions. Glob. Environ. Change 16, 207–220 (2006).

    Article  Google Scholar 

  14. Wild, M., Grieser, J. & Schar, C. Combined surface solar brightening and increasing greenhouse effect support recent intensification of the global land—hydrological cycle. Geophys. Res. Lett. 35, L17706 (2008).

    Article  Google Scholar 

  15. Stephens, G. L. & Ellis, T. D. Controls of global-mean precipitation increases in global warming GCM experiments. J. Clim. 21, 6141–6155 (2008).

    Article  Google Scholar 

  16. Andrews, T., Forster, P. M. & Gregory, J. M. A surface energy perspective on climate change. J. Clim. 22, 2557–2570 (2009).

    Article  Google Scholar 

  17. Wu, P., Wood, R., Ridley, J. & Lowe, J. Temporary acceleration of the hydrological cycle in response to a CO2 rampdown. Geophys. Res. Lett. 37, L12705 (2010).

    Google Scholar 

  18. Allan, R. P. et al. Physically consistent responses of the global atmospheric hydrological cycle in models and observations. Surv. Geophys. http://dx.doi.org/10.1007/s10712-012-9213-z (2013).

  19. Mitchell, T. D. Pattern scaling, an examination of the accuracy of the technique for describing future climates. Climatic Change 60, 217–242 (2003).

    Article  CAS  Google Scholar 

  20. Wilby, R. L. et al. A review of climate risk information for adaptation and development planning. Int. J. Climatol. 29, 1193 (2009).

    Article  Google Scholar 

  21. Gillett, N. P., Weaver, A. J., Zwiers, F. W. & Wehner, M. F. Detection of volcanic influence on global precipitation. Geophys. Res. Lett. 31, L12217 (2004).

    Google Scholar 

  22. Allen, M. R. & Stott, P. A. Estimating signal amplitudes in optimal fingerprinting, part I: Theory. Clim. Dynam. 21, 477–491 (2003).

    Article  Google Scholar 

  23. Hegerl, G. C. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 9 (Cambridge Univ. Press, 2007).

    Google Scholar 

  24. Stott, P. A et al. Detection and attribution of climate change: A regional perspective. WIREs Clim. Change 1, 192–211 (2010).

    Article  Google Scholar 

  25. Zhang, X. et al. Detection of human influence on twentieth-century precipitation trends. Nature 448, 461–465 (2007).

    Article  CAS  Google Scholar 

  26. Lambert, F. H., Stott, P. A., Allen, M. R. & Palmer, M. A. Detection and attribution of changes in 20th century land precipitation. Geophys. Res. Lett. 31, L10203 (2004).

    Article  Google Scholar 

  27. Forster, P. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) Ch. 2 (Cambridge Univ. Press, 2007).

  28. Andrews, T. et al. Precipitation, radiative forcing and global temperature change. Geophys. Res. Lett. 37, L14701 (2010).

    Article  Google Scholar 

  29. Wilcox, L. J., Highwood, E. J. & Dunstone, N. J. The influence of anthropogenic aerosol on multi-decadal variations of historical global climate. Environ. Res. Lett. 8, 024033 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme—DECC/Defra (GA01101). We thank C. Senior and G. Martin for helpful comments.

Author information

Authors and Affiliations

Authors

Contributions

P.W. organized the research. P.W. and N.C. performed the analysis and wrote the paper. P.S. provided comments and contributed to the text.

Corresponding author

Correspondence to Peili Wu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, P., Christidis, N. & Stott, P. Anthropogenic impact on Earth’s hydrological cycle. Nature Clim Change 3, 807–810 (2013). https://doi.org/10.1038/nclimate1932

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1932

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing