Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise

Abstract

Sea-level rise threatens coastal salt-marshes and mangrove forests around the world, and a key determinant of coastal wetland vulnerability is whether its surface elevation can keep pace with rising sea level. Globally, a large data gap exists because wetland surface and shallow subsurface processes remain unaccounted for by traditional vulnerability assessments using tide gauges. Moreover, those processes vary substantially across wetlands, so modelling platforms require relevant local data. The low-cost, simple, high-precision rod surface-elevation table–marker horizon (RSET-MH) method fills this critical data gap, can be paired with spatial data sets and modelling and is financially and technically accessible to every country with coastal wetlands. Yet, RSET deployment has been limited to a few regions and purposes. A coordinated expansion of monitoring efforts, including development of regional networks that could support data sharing and collaboration, is crucial to adequately inform coastal climate change adaptation policy at several scales.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: RSET-MH and tide gauge set-up in a coastal mangrove.
Figure 2: RSET set-up and measurements.

US GEOLOGICAL SURVEY

Figure 3: Disparity in coastal wetland vulnerability and surface-elevation monitoring.

References

  1. Spalding, M., Kainuma, M. & Collins, L. World Atlas of Mangroves (Earthscan, 2010).

    Book  Google Scholar 

  2. Greenberg, R., Maldonado, J., Droege, S. & McDonald, M. V. Tidal marshes: A global perspective on the evolution and conservation of their terrestrial vertebrates. BioScience 56, 675–685 (2006).

    Article  Google Scholar 

  3. Walters, B. B. et al. Ethnobiology, socio-economics and management of mangrove forests: A review. Aquat. Bot. 89, 220–236 (2008).

    Article  Google Scholar 

  4. Donato, D. C. et al. Mangroves among the most carbon-rich forests in the tropics. Nature Geosci. 4, 293–297 (2011).

    Article  CAS  Google Scholar 

  5. Hall, J. Policy: A changing climate for insurance. Nature Clim. Change 1, 248–250 (2011).

    Article  Google Scholar 

  6. Fitzgerald, D. M., Fenster, M. S., Argow, B. A. & Buynevich, I. V. Coastal impacts due to sea-level rise. Ann. Rev. Earth Planet. Sci. 36, 601–648 (2008).

    Article  CAS  Google Scholar 

  7. Duke, N. C. et al. A world without mangroves? Science 317, 41–42 (2007).

    Article  CAS  Google Scholar 

  8. Nerem, R. S., Chambers, D. P., Choe, C. & Mitchum, G. T. Estimating mean sea level change from the TOPEX and Jason altimeter missions. Mar. Geod. 33, 435–446 (2010).

    Article  Google Scholar 

  9. Nicholls, R. J. & Cazenave, A. Sea-level rise and its impact on coastal zones. Science 328, 1517–1520 (2010).

    Article  CAS  Google Scholar 

  10. Rahmstorf, S. A new view on sea level rise. Nature Rep. Clim. Change, 4, 44–459 (2010).

    Article  Google Scholar 

  11. Nicholls, R. J. Coastal flooding and wetland loss in the 21st century: Changes under the SRES climate and socio-economic scenarios. Glob. Environ. Change 14, 69–86 (2004).

    Article  Google Scholar 

  12. Nicholls, R. J. & Tol, R. S. Impacts and responses to sea-level rise: A global analysis of the SRES scenarios over the twenty-first century. Phil. Trans. R. Soc. A 364, 1073–1095 (2006).

    Article  Google Scholar 

  13. Cannon, C. H., Morley, R. J. & Bush, B. G. The current refugial rainforests of Sundaland are unrepresentative of their biogeographic past and highly vulnerable to disturbance. Proc. Natl Acad. Sci. USA 106, 11188–11193 (2009).

    Article  CAS  Google Scholar 

  14. McKee, K. L., Cahoon, D. R. & Feller, I. C. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Glob. Ecol. Biogeogr. 16, 545–556 (2007).

    Article  Google Scholar 

  15. Cronin, T. M. Was pre-twentieth century sea level stable? Eos 92, 455–456 (2011).

    Article  Google Scholar 

  16. Pethick, J. Shoreline adjustments and coastal management: Physical and biological processes under accelerated sea-level rise. Geogr. J. 159, 162 (1993).

    Article  Google Scholar 

  17. Tol, R. S. J. The double trade-off between adaptation and mitigation for sea level rise: An application of FUND. Mitig. Strat. Glob. Change 12, 741–753 (2007).

    Article  Google Scholar 

  18. Pfeffer, W. T., Harper, J. T. & O'Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321, 1340–1343 (2008).

    Article  CAS  Google Scholar 

  19. Cahoon, D. R. et al. A device for high precision measurement of wetland sediment elevation: II. The rod surface elevation table. J. Sediment. Res. 72, 734–739 (2002).

    Article  CAS  Google Scholar 

  20. Friess, D. A. et al. Are all intertidal wetlands naturally created equal? Bottlenecks, thresholds and knowledge gaps to mangrove and saltmarsh ecosystems. Biol. Rev. 87, 346–366 (2012).

    Article  Google Scholar 

  21. Church, J. A., White, N. J., Coleman, R., Lambeck, K. & Mitrovica, J. X. Estimates of the regional distribution of sea level rise over the 1950–2000 period. J. Climate, 17, 2609–2625 (2004).

    Article  Google Scholar 

  22. Cahoon, D. R., Day, J. W. Jr & Reed, D. J. The influence of surface and shallow subsurface soil processes on wetland elevation: A synthesis. Curr. Top. Wetland Biogeochem. 3, 72–88 (1999).

    Google Scholar 

  23. Gesch, D. B. Analysis of LiDAR elevation data for improved identification and delineation of lands vulnerable to sea-level rise. J. Coast. Res. 53, 49–58 (2009).

    Article  Google Scholar 

  24. Gesch, D. B., Gutierrez, B. T. & Gill, S. K. in Coastal Sensitivity to Sea Level Rise: Focusing on the Mid-Atlantic Region (ed. Urajner, M. C.) 25–42 (Nova Science, 2010).

    Google Scholar 

  25. Klemas, V. V. The role of remote sensing in predicting and determining coastal storm impacts. J. Coast. Res. 25, 1264–1275 (2009).

    Article  Google Scholar 

  26. Nobi, E. P. et al. Microlevel mapping of coastal geomorphology and coastal resources of Rameswaram Island, India: A remote sensing and GIS perspective. J. Coast. Res. 26, 424–428 (2010).

    Article  Google Scholar 

  27. Fagherazzi, S. et al. Numerical models of salt marsh evolution: Ecological, geomorphic and climatic factors. Rev. Geophys. 50, RG1002 (2012).

    Article  Google Scholar 

  28. Kirwan, M. L. et al. Limits on the adaptability of coastal marshes to rising sea level. Geophys. Res. Lett. 37, L23401 (2010).

    Article  Google Scholar 

  29. Fagherazzi, S., Carniello, L., D'Alpaos, L. & Defina, A. Critical bifurcation of shallow microtidal landforms in tidal flats and salt marshes. Proc. Natl Acad. Sci. USA 103, 8337–8341 (2006).

    Article  CAS  Google Scholar 

  30. Marani, M., D'Alpaos, A., Lanzoni, S., Carniello, L. & Rinaldo, A. Biologically controlled multiple equilibria of tidal land forms and the fate of the Venice lagoon. Geophys. Res. Lett. 34, L11402 (2007).

    Article  Google Scholar 

  31. Mariotti, G. & Fagherazzi, S. A numerical model for the coupled long-term evolution of salt marshes and tidal flats. J. Geophys. Res. 115, F01004 (2010).

    Google Scholar 

  32. Cahoon, D. R. et al. in Wetlands and Natural Resources Management (eds Verhoeven, J. T. A., Beltman, B., Bobboink, R. & Whigham, D.) 271–292 (Ecological Studies series 190, Springer, 2006).

    Book  Google Scholar 

  33. Krauss, K. W., Allen, J. A. & Cahoon, D. R. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuar. Coast. Shelf Sci. 56, 251–259 (2003).

    Article  Google Scholar 

  34. Day, J. et al. Sustainability of Mediterranean deltaic and lagoon wetlands with sea level rise: The importance of river input. Estuaries Coasts 34, 483–493 (2011).

    Article  Google Scholar 

  35. Traill, L. W. et al. Managing for change: Wetland transitions under sea-level rise and outcomes for threatened species. Divers. Distrib. 17, 1225–1233 (2011).

    Article  Google Scholar 

  36. Kairis, P. & Rybczyk, J. M. Sea level rise and eelgrass (Zostera marina) production: A spatially explicit relative elevation model for Padilla Bay, WA. Ecol. Model. 21, 1005–1016 (2010).

    Article  CAS  Google Scholar 

  37. Boumans, R. M. J. & Day, J. W. High precision measurements of sediment elevation in shallow coastal areas using a sedimentation-erosion table. Estuaries 16, 375–380 (1993).

    Article  Google Scholar 

  38. Cahoon, D. R. et al. A device for high precision measurement of wetland sediment elevation: I. Recent improvements to the sedimentation-erosion table. J. Sediment. Res. 72, 730–733 (2002).

    Article  Google Scholar 

  39. Cahoon, D. R., Reed, D. J. & Day, J. W. Estimating shallow subsidence in microtidal salt marshes of the southeastern United States: Kaye and Barghoorn revisited. Mar. Geol. 128, 1–9 (1995).

    Article  Google Scholar 

  40. Krauss, K. W. et al. Surface elevation change and susceptibility of different mangrove zones to sea-level rise on Pacific high islands of Micronesia. Ecosystems 13, 129–143 (2010).

    Article  Google Scholar 

  41. Ibáñez, C., Sharpe, P. J., Day, J. W., Day, J. N. & Prat, N. Vertical accretion and relative sea level rise in the Ebro delta wetlands (Catalonia, Spain). Wetlands 30, 979–988 (2010).

    Article  Google Scholar 

  42. Lovelock, C. E., Bennion, V., Grinham, A. & Cahoon, D. R. The role of surface and subsurface processes in keeping pace with sea level rise in intertidal wetlands of Moreton Bay, Queensland, Australia. Ecosystems 14, 745–757 (2011).

    Article  CAS  Google Scholar 

  43. Morris, J. T., Sundareshwar, P. V., Nietch, C. T., Kjerfve, B. & Cahoon, D. R. Responses of coastal wetlands to rising sea level. Ecology 83, 2869–2877 (2002).

    Article  Google Scholar 

  44. Cahoon, D. R. A review of major storm impacts on coastal wetland elevations. Estuar. Coasts 29, 889–898 (2006).

    Article  Google Scholar 

  45. Whelan, K. R. T. The Successional Dynamics of Lightning Initiated Canopy Gaps in the Mangrove Forests of Shark River, Everglades National Park, USA PhD thesis, Florida International Univ. (2005).

    Google Scholar 

  46. Cahoon, D. R. et al. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. J. Ecol. 91, 1093–1105 (2003).

    Article  Google Scholar 

  47. Langley, J. A., McKee, K. L., Cahoon, D. R., Cherry, J. A. & Megonigal, J. P. Elevated CO2 stimulates marsh elevation gain, counterbalancing sea-level rise. Proc. Natl Acad. Sci. USA 106, 6182–6186 (2009).

    Article  CAS  Google Scholar 

  48. Ford, M. A. & Grace, J. B. Effects of vertebrate herbivores on soil processes, plant biomass, litter accumulation and soil elevation changes in a coastal marsh. J. Ecol. 86, 974–982 (1998).

    Article  Google Scholar 

  49. McKee, K. L. & Grace, J. B. Effects of Prescribed Burning on Marsh-Elevation Change and the Risk of Wetland Loss Open-File Report 2012–1031 (USGS, 2012).

    Book  Google Scholar 

  50. Spencer T. et al. Surface elevation change in natural and re-created intertidal habitats, eastern England, UK, with particular reference to Freiston Shore. Wetl. Ecol. Manage. 20, 9–33 (2012).

    Article  Google Scholar 

  51. Lane, R. R., Day, J. W. & Day, J. N. Wetland surface elevation, vertical accretion, and subsidence at three Louisiana estuaries receiving diverted Mississippi River water. Wetlands 26, 1130–1142 (2006).

    Article  Google Scholar 

  52. Boumans, R. M. J., Day, J. W. & Kemp G. P. The effect of intertidal sediment fences on wetland surface elevation, wave energy and vegetation establishment in two Louisiana coastal marshes. Ecol. Eng. 9, 37–50 (1997).

    Article  Google Scholar 

  53. Ford, M. A., Cahoon, D. A. & Lynch, J. C. Restoring marsh elevation in a rapidly subsiding salt marsh by thin-layer deposition of dredged material. Ecol. Eng. 12, 189–205 (1999).

    Article  Google Scholar 

  54. Howe, A. J., Rodríguez, J. F. & Saco, P. M. Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuar. Coast. Shelf Sci. 84, 75–83 (2009).

    Article  CAS  Google Scholar 

  55. Rogers, K., Saintilan, N. & Copeland, C. Modelling wetland surface elevation dynamics and its implications to forecasting the effects of sea-level rise on estuarine wetlands. Ecol. Model. 244, 148–157 (2012).

    Article  Google Scholar 

  56. Church, J. A. & White, N. J. A 20th century acceleration in global sea-level rise. Geophys. Res. Lett., 33, L01602 (2006).

    Article  Google Scholar 

  57. Becker, M. et al. Sea level variations at tropical Pacific islands since 1950. Glob. Planet. Change 80–81, 85–98 (2012).

    Article  Google Scholar 

  58. Rybczyk, J. M. & Cahoon, D. R. Estimating the potential for submergence for two wetlands in the Mississippi River delta. Estuaries 25, 985–998 (2002).

    Article  Google Scholar 

  59. Scott, G. & Hensel, P. Geodesy on the water's edge: Applications of accurate heights in the coastal zone. Hydro Int. 11, 16–18 (2007).

    Google Scholar 

  60. Cahoon, D. R. & Lynch, J. C. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, USA. Mangroves Salt Marshes 1, 173–186 (1997).

    Article  Google Scholar 

  61. Steyer, G. D. et al. A proposed coast-wide reference monitoring system for evaluating wetland restoration trajectories in Louisiana. Environ. Monit. Assess. 81, 107–117 (2003).

    Article  Google Scholar 

  62. Steyer, G. D. Coastwide Reference Monitoring System (CRMS) Fact Sheet 2010–3018 (USGS, 2010); available at http://pubs.usgs.gov/fs/2010/3018

    Google Scholar 

  63. Coastwide Reference Monitoring System; available at http://www.lacoast.gov/crms

  64. Rogers, K. & Saintilan . Relationships between surface elevation and groundwater in mangrove forest of Southeast Australia. J. Coast. Res. 24, 63–69 (2008).

    Article  Google Scholar 

  65. Rogers, K., Saintilan, N. & Heijnis, H. Mangrove encroachment of salt marsh in Western Port Bay, Victoria: The role of sedimentation, subsidence, and sea level rise. Estuaries 28, 551–559 (2005).

    Article  Google Scholar 

  66. Coastal Wetland Planning, Protection and Restoration Act; available at http://lacoast.gov/new/default.aspx

  67. Alongi, D. M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 76, 1–13 (2008).

    Article  Google Scholar 

  68. Blum, M. D. & Roberts, H. H. Drowning of the Mississippi Delta due to insufficient sediment supply and global sea-level rise. Nature Geosci. 2, 488–491 (2009).

    Article  CAS  Google Scholar 

  69. Stanley, D. J. & Warne, A. G. Nile Delta: Recent geological evolution and human impact. Science 260, 628–634 (1993).

    Article  CAS  Google Scholar 

  70. Saintilan, N., Rogers, K. & McKee, K. in Coastal Wetlands: An Integrated Ecosystem Approach (eds Perillo, G. M., Wolanski, E., Cahoon, D. R. & Brinson, M. M.) 855–883 (Elsevier, 2009).

    Google Scholar 

  71. Peltier, W. R. Global glacial isostasy and the surface of the ice-age Earth: The ICE-5G (VM2) model and GRACE. Ann. Rev. Earth Planet. Sci. 32, 111–49 (2004).

    Article  CAS  Google Scholar 

  72. Anderson, R. S. & Menking, K. M. The Quaternary marine terraces of Santa Cruz, California: Evidence for coseismic uplift on two faults. Geol. Soc. Am. Bull. 106, 649–664 (1994).

    Article  Google Scholar 

  73. Savage, J. C. Interseismic uplift at the Nankai subduction zone, southwest Japan, 1951–1990. J. Geophys. Res. 100, 6339–6350 (1995).

    Article  Google Scholar 

  74. Nicholls, R., Brown, S., Hanson, S. & Hinkel, J. Economics of Coastal Zone Adaptation to Climate Change Discussion Paper 10 (World Bank, 2010); available via http://go.nature.com/ceFPzG

    Google Scholar 

  75. World Oceans Summit At Capella Singapore — Speech by Mr Teo Chee Hean, Deputy Prime Minister, Coordinating Minister for National Security and Minister for Home Affairs (Ministry of Home Affairs, Singapore Government, 2009); available via http://go.nature.com/GHSBRl

  76. National Oceanic and Atmospheric Administration CCGG Cooperative Air Sampling Network; available at http://www.esrl.noaa.gov/gmd/ccgg/flask.html

  77. United Nations Environment Programme Global Environment Monitoring System GEMSTAT Global Water Quality Database; available at http://www.gemstat.org

  78. UNEP-WCMC CITES Trade Database; available at http://www.unep-wcmc-apps.org/citestrade

  79. Global Access to Environmental Data and Environmental Monitoring (iQuest, 2012); available at http://www.iquest.co.nz/environmental-data-monitoring.php

  80. United Nations Environment Programme UNEP-GEMS/WATER; available at http://www.gemswater.org

  81. GEM Foundation, Global Earthquake Model; available at http://www.globalquakemodel.org

  82. International Forestry Resources and Institutions; available at http://www.umich.edu/ifri

  83. Smithsonian Tropical Research Institute Center for Tropical Science; available at http://www.ctfs.si.edu

  84. Ibañez, C., Antoni, C., Day, J. W. & Curcó, A. Morphologic development, relative sea level rise and sustainable management of water and sediment in the Ebre Delta, Spain. J. Coast. Conserv. 3, 191–202 (1997).

    Article  Google Scholar 

  85. Ostrom, E. & Nagendra, H. Insights on linking forests, trees, and people from the air, on the ground, and in the laboratory. Proc. Natl Acad. Sci. USA 19, 19224–19231 (2006).

    Article  Google Scholar 

  86. Van Laerhoven, F. Governing community forests and the challenge of solving two-level collective action dilemmas — a large-N perspective. Glob. Environ. Change 20, 539–546 (2010).

    Article  Google Scholar 

  87. http://www.ramsar.org

  88. Hashim, R., Kamali, B., Tamin, N. M. & Zakaria, R. An integrated approach to coastal rehabilitation: Mangrove restoration in Sungai Haji Dorani, Malaysia. Estuar. Coast. Shelf Sci. 86, 118–124 (2010).

    Article  Google Scholar 

  89. Jones, H. P., Hole, D. G. & Zavaleta, E. S. Harnessing nature to help people adapt to climate change. Nature Clim. Change 2, 504–509 (2012).

    Article  Google Scholar 

  90. Laffoley, D. & Grimsditch, G. The Management of Natural Coastal Carbon Sinks (IUCN, 2009).

    Google Scholar 

  91. McCleod, E. et al. A blueprint for blue carbon: Towards an improved understanding of the role of vegetated coastal habitats in sequestering CO2 . Front. Ecol. Environ. 9, 552–560 (2011).

    Article  Google Scholar 

  92. Siikamäki, J., Sanchirico, J. N. & Jardine, S. L. Global economic potential for reducing carbon dioxide emissions from mangrove loss. Proc. Natl Acad. Sci. USA 109, 14369–14374 (2012).

    Article  Google Scholar 

  93. Adapting to Coastal Climate Change: A Guidebook for Development Planners (United States Agency for International Development, 2009); available at http://masgc.org/climate/cop/Documents/USAIDCC.pdf.

  94. Renschler, C. S., Flanagan, D. C., Engel, B. A., Kramer, L. A. & Sudduth, K. A. Site-specific decision-making based on RTK-GPS survey and six alternative elevation data sources: Watershed topography and delineation. Trans. ASAE 45, 1883–1895 (2002).

    Article  Google Scholar 

  95. ASTER Global DEM Validation: Summary Report (METI/ERSDAC, NASA/LPDAAC & USGS/EROS, 2009); available via http://go.nature.com/Kyalme

  96. Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

    Article  Google Scholar 

  97. Nikolakapoulos, K. G., Kamaratakis, E. K. & Chrysoulakis, N. SRTM vs ASTER elevation products. Comparison for two regions in Crete, Greece. Int. J. Remote Sens. 27, 4819–4838 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

E.L.W. and D.A.F. were supported by the Singapore-Delft Water Alliance, grants R303-001-001-272 and R303-001-024-414. E.L.W. was supported by Ministry of Education, Government of Singapore grant R-154-000-400-133. D.A.F. was supported by Ministry of Education, Government of Singapore grant R-109-000-141-133. K.W.K., D.R.C., and G.R.G. were supported by the USGS Climate and Land Use Change R&D Program. The Nelson Mandela Metropolitan University and the South African Environmental Observation Network provided South African RSET data points. C. Lovelock provided the location of the RSET site in Indonesia. Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

E.L.W., D.A.F. and K.W.K. conceptualized the paper; D.R.C., D.A.F. and G.R.G. compiled global RSET locations; D.A.F. and E.L.W. conducted the GIS and expenditure analyses, and E.L.W., D.A.F., K.W.K., D.R.C., G.R.G. and J.P. wrote the paper.

Corresponding authors

Correspondence to Edward L. Webb or Daniel A. Friess.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Summary of published studies that utilize the SET or RSET-MH method to report coastal wetland surface elevation change. (PDF 426 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Webb, E., Friess, D., Krauss, K. et al. A global standard for monitoring coastal wetland vulnerability to accelerated sea-level rise. Nature Clim Change 3, 458–465 (2013). https://doi.org/10.1038/nclimate1756

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1756

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing