Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Assessment of the first consensus prediction on climate change

Abstract

In 1990, climate scientists from around the world wrote the First Assessment Report of the Intergovernmental Panel on Climate Change. It contained a prediction of the global mean temperature trend over the 1990–2030 period that, halfway through that period, seems accurate. This is all the more remarkable in hindsight, considering that a number of important external forcings were not included. So how did this success arise? In the end, the greenhouse-gas-induced warming is largely overwhelming the other forcings, which are only of secondary importance on the 20-year timescale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Changes in global mean temperature over the 1990–2010 period.

Similar content being viewed by others

References

  1. IPCC Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) (Cambridge Univ. Press, 1990).

  2. Bretherton, F. P., Bryan, K. & Woods, J. D. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) 173–194 (Cambridge Univ. Press, 1990).

    Google Scholar 

  3. Le Treut, H. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 93–127 (Cambridge Univ. Press, 2007).

    Google Scholar 

  4. Pielke, R. A. J. Climate predictions and observations. Nature Geosci. 1, 206 (2008).

    Article  CAS  Google Scholar 

  5. IPCC Climate Change 1992: The Supplementary Report to the IPCC Scientific Assessment (eds Houghton, J. T., Callander, B. A. & Varney, S. K.) (Cambridge Univ. Press, 1992).

  6. Kattenberg, A. et al. in IPCC Climate Change 1995: The Science of Climate Change (eds Houghton, J. T. et al.) Ch. 6 (Cambridge Univ. Press, 1995).

    Google Scholar 

  7. Cubasch, U. et al. in IPCC Climate Change 2001: The Scientific Basis (eds Houghton, J. T. et al.) 525–581 (Cambridge Univ. Press, 2001).

    Google Scholar 

  8. Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 748–845 (Cambridge Univ. Press, 2007).

    Google Scholar 

  9. Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B. & Jones, P. D. Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850. J. Geophys. Res. 111, D12106 (2006).

    Article  Google Scholar 

  10. Hansen, J., Ruedy, R., Sato, M. & Lo, K. Global surface temperature change. Rev. Geophys. 48, RG4004 (2010).

    Article  Google Scholar 

  11. Wigley, T. M. L., Smith, R. L. & Santer, B. D. Anthropogenic influence on the autocorrelation structure of hemispheric-mean temperatures. Science 282, 1676–1679 (1998).

    Article  CAS  Google Scholar 

  12. Tsonis, A. A. & Elsner, J. B. The autocorrelation function and human influences on climate. Science 285, 495 (1999).

    Article  Google Scholar 

  13. Wigley, T. M. L., Smith, R. L. & Santer, B. D. Response to: The autocorrelation function and human influences on climate. Science 285, 495 (1999).

    Article  Google Scholar 

  14. Allen, M. R. & Tett, S. F. B. Checking for model consistency in optimal fingerprinting. Clim. Dynam. 15, 419–434 (1999).

    Article  Google Scholar 

  15. Hegerl, G. C. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 663–745 (Cambridge Univ. Press, 2007).

    Google Scholar 

  16. Stone, D. A. et al. The detection and attribution of human influence on climate. Annu. Rev. Env. Resour. 34, 1–16 (2009).

    Article  Google Scholar 

  17. Meehl, G. A. et al. The WCRP CMIP3 multimodel dataset: A new era in climate change research. Bull. Am. Meteorol. Soc. 88, 1383–1394 (2007).

    Article  Google Scholar 

  18. Easterling, D. R. & Wehner, M. F. Is the climate warming or cooling? Geophys. Res. Lett. 36, L08706 (2009).

    Article  Google Scholar 

  19. Santer, B. D. et al. Separating signal and noise in atmospheric temperature changes: The importance of timescale. J. Geophys. Res. 116, D22105 (2011).

    Article  Google Scholar 

  20. Jenkins, G. J. & Derwent, R. G. in Climate Change: The IPCC Scientific Assessment (eds Houghton, J. T., Jenkins, G. J. & Ephraums, J. J.) 329–340 (Cambridge Univ. Press, 1990).

    Google Scholar 

  21. Meinshausen, M. et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change 109, 213–241 (2011).

    Article  CAS  Google Scholar 

  22. Hansen, J. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 130–163 (AGU Geophysical Monograph 29, Maurice Ewing, Vol. 5, American Geophysical Union, 1984).

    Book  Google Scholar 

  23. Frame, D. J. et al. Constraining climate forecasts: The role of prior assumptions. Geophys. Res. Lett. 32, L09702 (2005).

    Article  Google Scholar 

  24. Stone, D. A., Allen, M. R., Selten, F., Kliphuis, M. & Stott, P. A. The detection and attribution of climate change using an ensemble of opportunity. J. Clim. 20, 504–516 (2007).

    Article  Google Scholar 

  25. Allen, M. R. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  26. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci. 1, 735–743 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the international RCP Concentration Calculation and Data Group for the historical forcing data, and the UK Met Office Hadley Centre, the University of East Anglia’s Climate Research Unit and the Goddard Institute for Space Studies for global temperature data. M. Allen provided helpful comments on an earlier draft. D.J.F. would like to thank the Oxford Martin School and the Smith School of Enterprise and the Environment for support. D.A.S. would like to acknowledge funding from Microsoft Research with further support from the US Department of Energy’s Office of Science, Office of Biological and Environmental Research and the US National Oceanic and Atmospheric Administration’s Climate Program Office, through the International Detection and Attribution Group.

Author information

Authors and Affiliations

Authors

Contributions

D.J.F. and D.A.S. wrote the text and D.A.S. performed the calculations.

Corresponding authors

Correspondence to David J. Frame or Dáithí A. Stone.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frame, D., Stone, D. Assessment of the first consensus prediction on climate change. Nature Clim Change 3, 357–359 (2013). https://doi.org/10.1038/nclimate1763

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1763

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing