Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The impact of global land-cover change on the terrestrial water cycle

Abstract

Floods and droughts cause perhaps the most human suffering of all climate-related events; a major goal is to understand how humans alter the incidence and severity of these events by changing the terrestrial water cycle. Here we use over 1,500 estimates of annual evapotranspiration and a database of global land-cover change1 to project alterations of global scale terrestrial evapotranspiration (TET) from current anthropogenic land-cover change. Geographic modelling reveals that land-cover change reduces annual TET by approximately 3,500 km3 yr−1 (5%) and that the largest changes in evapotranspiration are associated with wetlands and reservoirs. Land surface model simulations support these evapotranspiration changes, and project increased runoff (7.6%) as a result of land-cover changes. Next we create a synthesis of the major anthropogenic impacts on annual runoff and find that the net result is an increase in annual runoff, although this is uncertain. The results demonstrate that land-cover change alters annual global runoff to a similar or greater extent than other major drivers, affirming the important role of land-cover change in the Earth System2,3,4. Last, we identify which major anthropogenic drivers to runoff change have a mean global change statistic that masks large regional increases and decreases: land-cover change, changes in meteorological forcing, and direct CO2 effects on plants.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The impact of land-cover change on global ET.
Figure 2: Major human impacts to global annual runoff.
Figure 3: Effects of individual types of land-cover conversions on annual ET.

Similar content being viewed by others

References

  1. Sterling, S. & Ducharne, A. Comprehensive data set of global land cover change for land surface model applications. Glob. Biogeochem. Cycles 22, GB3017 (2008).

    Article  Google Scholar 

  2. Pielke, R. A. et al. Land use/land cover changes and climate: Modeling analysis and observational evidence. Wires Climatic Change 2, 828–850 (2011).

    Article  Google Scholar 

  3. NRC, Radiative Forcing of Climate Change: Expanding the Concept and Addressing Uncertainties (National Research Council, 2005).

    Google Scholar 

  4. Ban-Weiss, G. A., Bala, G., Cao, L., Pongratz, J. & Caldeira, K. Climate forcing and response to idealized changes in surface latent and sensible heat. Environ. Res. Lett. 6, 034032 (2011).

    Article  Google Scholar 

  5. Erb, K. H. et al. Analyzing the global human appropriation of net primary production—processes, trajectories, implications. Ecol. Econ. 69, 250–259 (2009).

    Article  Google Scholar 

  6. Postel, S. L., Daily, G. C. & Ehrlich, P. R. Human appropriation of renewable fresh water. Science 271, 785–788 (1996).

    Article  CAS  Google Scholar 

  7. Bounoua, L., DeFries, R. S., Collatz, G. J., Sellers, P. & Khan, H. Effects of land cover conversion on surface climate. Climatic Change 52, 29–64 (2002).

    Article  Google Scholar 

  8. Zhao, M., Pitman, A. J. & Chase, T. N. The impact of land cover change on the atmospheric circulation. Clim. Dynam. 17, 467–477 (2001).

    Article  Google Scholar 

  9. Betts, R. A. Biogeophysical impacts of land use on present-day climate: Near surface temperature change and radiative forcing. Atmos. Sci. Lett. 2, 39–51 (2001).

    Article  Google Scholar 

  10. Piao, S. L. et al. Changes in climate and land use have a larger direct impact than rising CO2 on global river runoff trends. Proc. Natl Acad. Sci. USA 104, 15242–15247 (2007).

    Article  CAS  Google Scholar 

  11. Findell, K. L., Shevliakova, E., Milly, P. C. D. & Stouffer, R. J. Modeled impact of anthropogenic land cover change on climate. J. Clim. 20, 3621–3634 (2007).

    Article  Google Scholar 

  12. Gordon, L. J. et al. Human modification of global water vapor flows from the land surface. Proc. Natl Acad. Sci. USA 102, 7612–7617 (2005).

    Article  CAS  Google Scholar 

  13. Gedney, N. et al. Detection of a direct carbon dioxide effect in continental river runoff records. Nature 439, 835–838 (2006).

    Article  CAS  Google Scholar 

  14. Rost, S., Gerten, D. & Heyder, U. Human alterations of the terrestrial water cycle through land management. Adv. Geosci. 18, 43–50 (2008).

    Article  Google Scholar 

  15. Gerten, D., Schaphoff, S., Haberlandt, U., Lucht, W. & Sitch, S. Terrestrial vegetation and water balance—hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 286, 249–270 (2004).

    Article  CAS  Google Scholar 

  16. Haberl, H. et al. Quantifying and mapping the human appropriation of net primary production in earth’s terrestrial ecosystems. Proc. Natl Acad. Sci. USA 104, 12942–12945 (2007).

    Article  CAS  Google Scholar 

  17. Haddeland, I., Skaugen, T. & Lettenmaier, D. P. Hydrologic effects of land and water management in North America and Asia: 1700–1992. Hydrol. Earth Syst. Sci. 11, 1035–1045 (2007).

    Article  Google Scholar 

  18. Vorosmarty, C. J., Green, P., Salisbury, J. & Lammers, R. B. Global water resources: Vulnerability from climate change and population growth. Science 289, 284–288 (2000).

    Article  CAS  Google Scholar 

  19. Koster, R. D. et al. Regions of strong coupling between soil moisture and precipitation. Science 305, 1138–1140 (2004).

    Article  CAS  Google Scholar 

  20. Zhang, J. Y., Wang, W. C. & Wei, J. F. Assessing land–atmosphere coupling using soil moisture from the Global Land Data Assimilation System and observational precipitation. J. Geophys. Res. 113, D17119 (2008).

    Article  Google Scholar 

  21. Davin, E. L. & de Noblet-Ducoudre, N. Climatic impact of global-scale deforestation: Radiative versus nonradiative processes. J. Clim. 23, 97–112 (2010).

    Article  Google Scholar 

  22. Davin, E. L., de Noblet-Ducoudre, N. & Friedlingstein, P. Impact of land cover change on surface climate: Relevance of the radiative forcing concept. Geophys. Res. Lett. 34, L13702 (2007).

    Article  Google Scholar 

  23. Milliman, J. D., Farnsworth, K. L., Jones, P. D., Xu, K. H. & Smith, L. C. Climatic and anthropogenic factors affecting river discharge to the global ocean, 1951–2000. Glob. Planet Change 62, 187–194 (2008).

    Article  Google Scholar 

  24. Labat, D., Godderis, Y., Probst, J. L. & Guyot, J. L. Evidence for global runoff increase related to climate warming. Adv. Water Resour. 27, 631–642 (2004).

    Article  Google Scholar 

  25. Kundzewicz, Z. W. et al. The implications of projected climate change for freshwater resources and their management. Hydrol. Sci. J. 53, 3–10 (2008).

    Article  Google Scholar 

  26. Milly, P. C. D., Dunne, K. A. & Vecchia, A. V. Global pattern of trends in streamflow and water availability in a changing climate. Nature 438, 347–350 (2005).

    Article  CAS  Google Scholar 

  27. Pitman, A. J. et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett. 36, L14814 (2009).

    Article  Google Scholar 

  28. Krinner, G. et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles 19, GB1015 (2005).

    Article  Google Scholar 

  29. Ngo-Duc, T., Polcher, J. & Laval, K. A 53-year forcing data set for land surface models. J. Geophys. Res. 110, D06116 (2005).

    Google Scholar 

  30. De Rosnay, P., Polcher, J., Laval, K. & Sabre, M. Integrated parameterization of irrigation in the land surface model ORCHIDEE, Validation over Indian Peninsula. Geophys. Res. Lett. 30, 1986 (2003).

    Article  Google Scholar 

  31. Ngo-Duc, T., Laval, K., Polcher, J., Lombard, A. & Cazenave, A. Effects of land water storage on global mean sea level over the past half century. Geophys. Res. Lett. 32, L09704 (2005).

    Article  Google Scholar 

  32. Sellers, P. J. et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. Part I: Model formulation. J. Clim. 9, 676–705 (1996).

    Article  Google Scholar 

  33. Sellers, P. J. et al. A revised land surface parameterization (SiB2) for atmospheric GCMS. Part II: The generation of global fields of terrestrial biophysical parameters from satellite data. J. Clim. 9, 706–737 (1996).

    Article  Google Scholar 

  34. Jin, M. & Shepherd, J. M. Inclusion of urban landscape in a climate model: How can satellite data help? Bull. Am. Meteorol. Soc. 86, 681–689 (2005).

    Article  Google Scholar 

  35. Arnfield, A. J. Two decades of urban climate research: A review of turbulence, exchanges of energy and water, and the urban heat island. Int. J. Clim. 23, 1–26 (2003).

    Article  Google Scholar 

  36. Zhang, X., Friedl, M. A., Schaaf, C. B. & Strahler, A. H. Climate controls on vegetation phenological patterns in northern mid- and high latitudes inferred from MODIS data. Glob. Change Biol. 10 (2004).

  37. Jackson, R. B., Mooney, H. A. & Schulze, E. D. A global budget for fine root biomass, surface area, and nutrient contents. Proc. Natl Acad. Sci. USA 94, 7362–7366 (1997).

    Article  CAS  Google Scholar 

  38. Oguntoyinbo, J. S. Reflection coefficient of natural vegetation, crops and urban surfaces in Nigeria. Quart. J. R. Meteorol. Soc. 96, 430–441 (1970).

    Article  Google Scholar 

  39. Miranda, A. C. et al. Fluxes of carbon, water and energy over Brazilian cerrado: An analysis using eddy covariance and stable isotopes. Plant. Cell Environ. 20, 315–328 (1997).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the generous contributions of ET data from scientists around the world. We thank T. Ngo Duc, H. Oumer, S. Rojstaczer, W. Schlesinger, R. Jackson and M. Meybeck for helpful comments on an earlier version of this manuscript. We thank M. Mancip and L. Bozec for technical support with the database and LSM simulations. This work was supported by the a Chateaubriand Fellowship for Scientific Research from the Office for Science and Technology of the Embassy of France in the USA, a Marie Curie Intra European Fellowship (#09949), and a Discovery Grant from the National Sciences and Engineering Research Council of Canada (RGPIN/387243-2011).

Author information

Authors and Affiliations

Authors

Contributions

S.M.S. designed the research, conducted the data analysis, and wrote the manuscript. The concepts of the land surface modelling were jointly developed and discussed by S.M.S., A.D. and J.P. A.D. assisted with the LSM data analysis. A.D. and J.P. contributed to the conception and analysis of the LSM simulation and to the paper writing. All authors gave comments on the manuscript.

Corresponding author

Correspondence to Shannon M. Sterling.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1534 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sterling, S., Ducharne, A. & Polcher, J. The impact of global land-cover change on the terrestrial water cycle. Nature Clim Change 3, 385–390 (2013). https://doi.org/10.1038/nclimate1690

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1690

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing