Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions

Abstract

Coral reef ecosystems develop best in high-flow environments but their fragile frameworks are also vulnerable to high wave energy. Wave-resistant algal rims, predominantly made up of the crustose coralline algae (CCA) Porolithon onkodes and P. pachydermum1,2, are therefore critical structural elements for the survival of many shallow coral reefs. Concerns are growing about the susceptibility of CCA to ocean acidification because CCA Mg-calcite skeletons are more susceptible to dissolution under low pH conditions than coral aragonite skeletons3. However, the recent discovery4 of dolomite (Mg0.5Ca0.5(CO3)), a stable carbonate5, in P. onkodes cells necessitates a reappraisal of the impacts of ocean acidification on these CCA. Here we show, using a dissolution experiment, that dried dolomite-rich CCA have 6–10 times lower rates of dissolution than predominantly Mg-calcite CCA in both high-CO2 ( 700 ppm) and control ( 380 ppm) environments, respectively. We reveal this stabilizing mechanism to be a combination of reduced porosity due to dolomite infilling and selective dissolution of other carbonate minerals. Physical break-up proceeds by dissolution of Mg-calcite walls until the dolomitized cell eventually drops out intact. Dolomite-rich CCA frameworks are common in shallow coral reefs globally and our results suggest that it is likely that they will continue to provide protection and stability for coral reef frameworks as CO2 rises.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dependence of weight loss of coralline algae on composition (mol% MgCO3).
Figure 2: Comparison of intracellular mineralization in the Dr and Dp coralline algae.
Figure 3: Overview of Dr and Dp coralline algae with evidence of natural dissolution processes at the base exposed to sea water and corresponding XRD patterns.
Figure 4: Dr CCA crust on coral branch.

References

  1. Littler, M. M. & Doty, M. S. Ecological components structuring seaward edges of Tropical Pacific reefs: Distribution, communities and productivity of Porolithon. J. Ecol. 63, 117–129 (1975).

    Article  Google Scholar 

  2. Adey, W. H. & Macintyre, I. G. Crustose coralline algae: A re-evaluation in the geological sciences. Geol. Soc. Am. Bull. 84, 883–904 (1973).

    Article  Google Scholar 

  3. Bischoff, W. D., Bishop, F. C. & Mackenzie, F. T. Biogenically produced magnesian calcite: In homogeneities in chemical and physical properties; comparison with synthetic phases. Am. Mineral. 68, 1183 (1983).

    CAS  Google Scholar 

  4. Nash, M. C. et al. First discovery of dolomite and magnesite in living coralline algae and its geobiological implications. Biogeosciences 8, 3331–3340 (2011).

    Article  CAS  Google Scholar 

  5. Wilkinson, B. W. & Given, R. K. Secular variation in abiotic marine carbonates: Constraints on phanerozoic atmospheric carbon dioxide contents and oceanic Mg/Ca ratios. J. Geol. 94, 321–333 (1986).

    Article  CAS  Google Scholar 

  6. Rees, S. A., Opdyke, B. N., Wilson, P. A. & Fifield, L. K. Coral reef sedimentation on Rodrigues and the Western Indian Ocean and its impact on the carbon cycle. Phil. Tran. R. Soc. A 363, 101–120 (2005).

    Article  CAS  Google Scholar 

  7. Adey, W. H. Review: Coral reefs: Algal structured and mediated ecosystems in shallow, turbulent, alkaline waters. J. Phycol. 34, 393–406 (1998).

    Article  Google Scholar 

  8. Chave, K. E. Aspects of the biogeochemistry of magnesium 1. Calcareous marine organisms. J. Geol. 62, 266–283 (1954).

    Article  CAS  Google Scholar 

  9. Milliman, J. D., Gastner, M. & Muller, J. Utilization of magnesium in coralline algae. Geol. Soc. Am. Bull. 82, 573–580 (1971).

    Article  CAS  Google Scholar 

  10. Plummer, L. N. & Mackenzie, F. T. Predicting mineral solubility from rate data: Application to the dissolution of magnesian calcites. Am. J. Sci. 274, 61–83 (1974).

    Article  CAS  Google Scholar 

  11. Bischoff, W. D., Mackenzie, F. T. & Bishop, F. C. Stabilities of synthetic magnesian calcites in aqueous solution: Comparison with biogenic materials. Geochim. Cosmochim. Acta 51, 1413–1423 (1987).

    Article  CAS  Google Scholar 

  12. Morse, J. W., Arvidson, R. S. & Luttge, A. Calcium Carbonate formation and dissolution. Chem. Rev. 107, 342–381 (2007).

    Article  CAS  Google Scholar 

  13. Santos, I. R., Glud, R. N., Maher, D. & Eyre, B. D. Diel coral reef acidification driven by pore water advection in permeable carbonate sands, Heron Island, Great Barrier Reef. Geophys. Res. Lett. 38, L03604 (2011).

    Article  Google Scholar 

  14. Diaz-Pulido, G., Anthony, K. R. N., Kline, D. I., Dove, S. & Hoegh-Guldberg, O. Interactions between ocean acidification and warming on the mortality and dissolution of coralline algae. J. Phycol. 48, 32–39 (2012).

    Article  CAS  Google Scholar 

  15. Kline, D. I., Teneva, L., Schneider, K., Miard, T. & Chai, A. et al. A short-term in situ CO2 enrichment experiment on Heron Island (GBR). Sci. Rep. 2, 413 (2012).

    Article  Google Scholar 

  16. Pokrovsky, O. S. & Schott, J. Kinetics and mechanism of dolomite dissolution in neutral to alkaline solutions revisited. Am. J. Sci. 301, 597–626 (2001).

    Article  CAS  Google Scholar 

  17. Al-Kawaz, H. A. Dissolution Rate Constant of Carbonates under Natural Environments. Tikrit J. Pure Sci. 15 (3), 84–90 (2010).

    Google Scholar 

  18. Henrich, R. & Wefer, G. Dissolution of biogenic carbonates: Effects of skeletal structure. Mar. Geol. 71, 341–362 (1986).

    Article  CAS  Google Scholar 

  19. Opdyke, B. N., Gust, G. & Ledwell, J. R. Mass transfer from smooth alabaster surfaces in turbulent flows. Geophys. Res. Lett. 14, 1131–1134 (1987).

    Article  Google Scholar 

  20. Clarke, F. W. & Wheeler, W. C. The Inorganic Constituents of Marine Invertebrates (USGS, 1922).

  21. Kuffner, I. B., Andersson, A. J., Jokiel, P. L., Rodgers, K. S. & Mackenzie, F. T. Decreased abundance of crustose coralline algae due to ocean acidification. Nature Geosci. 1, 114–117 (2008).

    Article  CAS  Google Scholar 

  22. Anthony, K. R. N., Kline, D. I., Diaz-Pulido, G., Dove, S. & Hoegh-Guldberg, O. Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc. Natl Acad. Sci. USA 105, 17442–17446 (2008).

    Article  CAS  Google Scholar 

  23. Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article  CAS  Google Scholar 

  24. Zhang, F., Xu, H., Konishi, H., Shelobolina, E. S. & Roden, E. E. Polysaccharide-catalyzed nucleation and growth of disordered dolomite: A potential precursor of sedimentary dolomite. Am. Mineral. 97, 556–567 (2012).

    Article  CAS  Google Scholar 

  25. Krause, S. et al. Microbial nucleation of Mg-rich dolomite in exopolymeric substances under anoxic modern seawater salinity: New insight into an old enigma. Geology 40, 587–590 (2012).

    Article  CAS  Google Scholar 

  26. Bilan, M. I. & Usov, A. I. Polysaccharides of calcareous algae and their effect on the calcification process. Russ. J. Bioorg. Chem. 27, 2–16 (2001).

    Article  CAS  Google Scholar 

  27. Ramus, J. The production of extracellular polysaccharide by the unicellular red algae Porphyridium aerugineum. J. Phycol. 8, 97–111 (1972).

    CAS  Google Scholar 

  28. Doropoulos, C., Ward, S., Diaz-Pulido, G., Hoegh-Guldberg, O. & Mumby, P. J. Ocean acidification reduces coral recruitment by disrupting intimate larval-algal settlement interactions. Ecol. Lett. 15, 338–346 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

Thanks to F. Brink and the team at the ANU Centre for Advanced Microscopy for assistance with SEM work, A. Harvey for CCA samples from Victoria, L. Teneva for differential interference contrast analyses, J. Caves for field work assistance, the FOCE team and staff at Heron Island Research Centre, J. W. Lai and D. Nash for sample preparation. S. Connell for assistance with Heron experiments and J. Roberts for assistance with SEM.

Author information

Authors and Affiliations

Authors

Contributions

M.C.N. and B.N.O. designed initial project; M.C.N., B.D.R. and D.I.K. carried out Heron Island experimental work and water chemistry measurements; U.T. assisted with subsequent analyses and project design. G.D-P., sample identification and design of experimental tank facilities; A.K. and W.H.A., sample collection and identification. M.C.N., U.T. and W.H.A., SEM. M.C.N. and U.T., XRD analysis. C.B., M.G. and J.P., sample collection, survey, XRD and data analyses. M.C.N. and U.T. wrote and edited the manuscript and all authors contributed.

Corresponding author

Correspondence to M. C. Nash.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nash, M., Opdyke, B., Troitzsch, U. et al. Dolomite-rich coralline algae in reefs resist dissolution in acidified conditions. Nature Clim Change 3, 268–272 (2013). https://doi.org/10.1038/nclimate1760

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1760

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing