Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Long-term responses of North Atlantic calcifying plankton to climate change

Abstract

The global increase in atmospheric carbon dioxide concentration is potentially threatening marine biodiversity in two ways. First, carbon dioxide and other greenhouse gases accumulating in the atmosphere are causing global warming1. Second, carbon dioxide is altering sea water chemistry, making the ocean more acidic2. Although temperature has a cardinal influence on all biological processes from the molecular to the ecosystem level3, acidification might impair the process of calcification or exacerbate dissolution of calcifying organisms4. Here, we show however that North Atlantic calcifying plankton primarily responded to climate-induced changes in temperatures during the period 1960–2009, overriding the signal from the effects of ocean acidification. We provide evidence that foraminifers, coccolithophores, both pteropod and non-pteropod molluscs and echinoderms exhibited an abrupt shift circa 1996 at a time of a substantial increase in temperature5 and that some taxa exhibited a poleward movement in agreement with expected biogeographical changes under sea temperature warming6,7. Although acidification may become a serious threat to marine calcifying organisms, our results suggest that over the study period the primary driver of North Atlantic calcifying plankton was oceanic temperature.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Decadal changes (1960–2009) in northeast Atlantic calcifying plankton inferred from standardized PCAs.
Figure 2: Decadal changes in the modelled spatial distribution of calcifying plankton in the northeast Atlantic.
Figure 3: Decadal changes (1960–2009) in North Atlantic calcifying plankton in relation to large-scale hydro-climatological forcing.

Similar content being viewed by others

References

  1. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  2. Orr, J. C. et al. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437, 681–686 (2005).

    Article  CAS  Google Scholar 

  3. Brown, J. H., Gillooly, J. F., Allen, A. P., Savage, V. M. & West, G. B. Toward a metabolic theory of ecology. Ecology 85, 1771–1789 (2004).

    Article  Google Scholar 

  4. Fabry, V. J., Seibel, B. A., Feely, R. A. & Orr, J. C. Impacts of ocean acidification on marine fauna and ecosystem processes. ICES J. Mar. Sci. 65, 414–432 (2008).

    Article  CAS  Google Scholar 

  5. Reid, P. C. & Beaugrand, G. Global synchrony of an accelerating rise in sea surface temperature. J. Mar. Biol. Assoc. UK 92, 1435–1450 (2012).

    Article  Google Scholar 

  6. Parmesan, C. in Climate Change and Biodiversity (eds Lovejoy, T.E. & Hannah, L.) 41–55 (Yale Univ. Press, 2005).

    Google Scholar 

  7. Beaugrand, G., Reid, P. C., Ibañez, F., Lindley, J. A. & Edwards, M. Reorganisation of North Atlantic marine copepod biodiversity and climate. Science 296, 1692–1694 (2002).

    Article  CAS  Google Scholar 

  8. Caldeira, K. & Wickett, M. E. Ocean model predictions of chemistry changes from carbon dioxide emissions to the atmosphere and ocean. J. Geophys. Res. 110, C09S04 (2005).

    Article  Google Scholar 

  9. Doney, S. C., Balch, W. M., Fabry, V. J. & Feely, R. A. Ocean acidification: A critical emerging problem for the ocean sciences. Oceanography 22, 16–25 (2009).

    Article  Google Scholar 

  10. Moy, A. D., Howard, W. R., Bray, S. G. & Trull, T. W. Reduced calcification in modern Southern Ocean planktonic foraminifera. Nature Geosci. 2, 276–280 (2009).

    Article  CAS  Google Scholar 

  11. Beaugrand, G. Unanticipated biological changes and global warming. Mar. Ecol. Prog. Ser. 445, 293–301 (2012).

    Article  Google Scholar 

  12. Richardson, A. J. & Schoeman, D. S. Climate impact on plankton ecosystems in the northeast Atlantic. Science 305, 1609–1612 (2004).

    Article  CAS  Google Scholar 

  13. Reid, P. C. et al. The continuous plankton recorder: Concepts and history, from plankton indicator to undulating recorders. Prog. Oceanogr. 58, 117–173 (2003).

    Article  Google Scholar 

  14. Luczak, C., Beaugrand, G., Jaffré, M. & Lenoir, S. Climate change impact on Balearic Shearwater through a trophic cascade. Biol. Lett. 7, 702–705 (2011).

    Article  CAS  Google Scholar 

  15. Beaugrand, G., Edwards, M. & Legendre, L. Marine biodiversity, ecosystem functioning and the carbon cycles. Proc. Natl Acad. Sci. USA 107, 10120–10124 (2010).

    Article  CAS  Google Scholar 

  16. Kirby, R. R., Beaugrand, G. & Lindley, J. A. Synergistic effects of climate and fishing in a marine ecosystem. Ecosystems 12, 548–561 (2009).

    Article  Google Scholar 

  17. Kirby, R. R. & Beaugrand, G. Trophic amplification of climate warming. Proc. R. Soc. Lond. B Biol. Sci. 276, 3053–3062 (2009).

    Article  Google Scholar 

  18. Cubillos, J. C. et al. Calcification morphotypes of the coccolithophorid Emiliania huxleyi in the Southern Ocean: Changes in 2001 to 2006 compared to historical data. Mar. Ecol. Prog. Ser. 348, 47–54 (2007).

    Article  Google Scholar 

  19. Legendre, P. & Legendre, L. (eds) Numerical Ecology 2nd edn (Elsevier Science B.V., 1998).

  20. Vézina, A. F. & Hoegh-Gulberg, O. Effects of ocean acidification on marine ecosystems: Introduction. Mar. Ecol. Prog. Ser. 373, 199–201 (2008).

    Article  Google Scholar 

  21. Ries, J. B., Cohen, A. L. & McCorkle, D. C. Marine calcifiers exhibit mixed responses to CO2-induced ocean acidification. Geology 37, 1131–1134 (2009).

    Article  CAS  Google Scholar 

  22. Form, A. U. & Riebesell, U. Acclimation to ocean acidification during the long-term CO2 exposure in the cold-water coral Lophelia pertusa. Glob. Change Biol. 18, 843–853 (2012).

    Article  Google Scholar 

  23. Boyd, P. W. Beyond ocean acidification. Nature Geosci. 4, 273–274 (2011).

    Article  CAS  Google Scholar 

  24. Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s Historical Merged Land–Ocean Surface Temperature Analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

  25. Hurrell, J. W., Yochanan, K. & Visbeck, M. The North Atlantic oscillation. Science 291, 603–605 (2001).

    Article  CAS  Google Scholar 

  26. Enfield, D. B., Mestas-Nunez, A. M. & Trimble, P. J. The Atlantic Multidecadal Oscillation and its relationship to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).

    Article  Google Scholar 

  27. Hurrell, J. W. Decadal trends in the North Atlantic Oscillation: Regional temperatures and precipitations. Science 269, 676–679 (1995).

    Article  CAS  Google Scholar 

  28. Takahashi, T., Sutherland, S. C. & Kozyr, A. Global ocean surface water partial pressure of CO2 Database: Measurements performed during 1957–2011. Version 2011 (Carbon Dioxide Information Analysis Center, 2012); available at cdiac.ornl.gov/oceans/LDEO_Underway_Database/.

  29. Feely, R. A., Doney, S. C. & Cooley, S. R. Ocean acidification: Present conditions and future changes in a high-CO2 world. Oceanography 22, 36–47 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was part of the EU-funded FP7 European Project on Ocean Acidification (EPOCA) and the regional project BIODIMAR. We thank past and present SAHFOS workers and the international funding consortium supporting the CPR survey. Their dedication has made this unique time-series possible. We also thank J-P. Gattuso for his help with pH and pCO2 data.

Author information

Authors and Affiliations

Authors

Contributions

G.B. and A.M-G. conceived the study; G.B., A.M-G. and E.G. compiled the data; G.B. and E.G. analysed the data. G.B., A.M-G., M.E. and E.G. wrote the paper.

Corresponding author

Correspondence to Gregory Beaugrand.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 430 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beaugrand, G., McQuatters-Gollop, A., Edwards, M. et al. Long-term responses of North Atlantic calcifying plankton to climate change. Nature Clim Change 3, 263–267 (2013). https://doi.org/10.1038/nclimate1753

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1753

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing