Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Thermal tolerance and the global redistribution of animals

Abstract

The redistribution of life on Earth has emerged as one of the most significant biological responses to anthropogenic climate warming1,2,3. Despite being one of the most long-standing puzzles in ecology4, we still have little understanding of how temperature sets geographic range boundaries5. Here we show that marine and terrestrial ectotherms differ in the degree to which they fill their potential latitudinal ranges, as predicted from their thermal tolerance limits. Marine ectotherms more fully occupy the extent of latitudes tolerable within their thermal tolerance limits, and are consequently predicted to expand at their poleward range boundaries and contract at their equatorward boundaries with climate warming. In contrast, terrestrial ectotherms are excluded from the warmest regions of their latitudinal range; thus, the equatorward, or ‘trailing’ range boundaries, may not shift consistently towards the poles with climate warming. Using global observations of climate-induced range shifts, we test this prediction and show that in the ocean, shifts at both range boundaries have been equally responsive, whereas on land, equatorward range boundaries have lagged in response to climate warming. These results indicate that marine species’ ranges conform more closely to their limits of thermal tolerance, and thus range shifts will be more predictable and coherent. However, on land, warmer range boundaries are not at equilibrium with heat tolerance. Understanding the relative contribution of factors other than temperature in controlling equatorward range limits is critical for predicting distribution changes, with implications for population and community viability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Environmental temperature, thermal tolerance and potential latitudinal ranges.
Figure 2: Potential and realized latitudinal range boundaries of ectotherms.
Figure 3: Asymmetry in recent geographic range shifts of ectotherms.

Similar content being viewed by others

References

  1. Walther, G-R. et al. Ecological responses to recent climate change. Nature 416, 389–395 (2002).

    Article  CAS  Google Scholar 

  2. Parmesan, C. & Yohe, G. A globally coherent fingerprint of climate change impacts across natural systems. Nature 421, 37–42 (2003).

    Article  CAS  Google Scholar 

  3. Thomas, C. D. Climate, climate change and range boundaries. Divers. Distrib. 16, 488–495 (2010).

    Article  Google Scholar 

  4. Darwin, C. R. On the Origin of Species by Means of Natural Selection (John Murray, 1859).

    Google Scholar 

  5. Sexton, J. P., McIntyre, P. J., Angert, A. L. & Rice, K. J. Evolution and ecology of species range limits. Annu. Rev. Ecol. Evol. Syst. 40, 415–436 (2009).

    Article  Google Scholar 

  6. Cheung, W. W. L. et al. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 10, 235–251 (2009).

    Article  Google Scholar 

  7. Thomas, C. D., Franco, A. M. A. & Hill, J. K. Range retractions and extinction in the face of climate warming. Trends Ecol. Evol. 21, 415–416 (2006).

    Article  Google Scholar 

  8. Pereira, H. M. et al. Scenarios for Global Biodiversity in the 21st Century. Science 330, 1496–1501 (2010).

    Article  CAS  Google Scholar 

  9. Stevens, G. C. The latitudinal gradient in geographical range—how so many species coexist in the tropics. Am. Nat. 133, 240–256 (1989).

    Article  Google Scholar 

  10. Calosi, P. et al. What determines a species’ geographical range? Thermal biology and latitudinal range size relationships in European diving beetles (Coleoptera: Dytiscidae). J. Anim. Ecol. 79, 194–204 (2010).

    Article  Google Scholar 

  11. Cruz, F. B., Fitzgerald, L. A., Espinoza, R. E. & Schulte, J. A. The importance of phylogenetic scale in tests of Bergmann’s and Rapoport’s rules: Lessons from a clade of South American lizards. J. Evol. Biol. 18, 1559–1574 (2005).

    Article  CAS  Google Scholar 

  12. Brattstrom, B. Thermal acclimation in Australian amphibians. Comp. Biochem. Physiol. 35, 69–103 (1970).

    Article  Google Scholar 

  13. Deutsch, C. A. et al. Impacts of climate warming on terrestrial ectotherms across latitude. Proc. Natl Acad. Sci. USA 105, 6668–6672 (2008).

    Article  CAS  Google Scholar 

  14. Andrewartha, H. G. Diapause in relation to the ecology of insects. Biol. Rev. Camb. Philos. Soc. 27, 50–107 (1952).

    Article  Google Scholar 

  15. Portner, H. O. & Knust, R. Climate change affects marine fishes through the oxygen limitation of thermal tolerance. Science 315, 95–97 (2007).

    Article  Google Scholar 

  16. Hampe, A. & Petit, R. J. Conserving biodiversity under climate change: The rear edge matters. Ecol. Lett. 8, 461–467 (2005).

    Article  Google Scholar 

  17. Burrows, M. T. et al. The pace of shifting climate in marine and terrestrial ecosystems. Science 334, 652–655 (2011).

    Article  CAS  Google Scholar 

  18. Thomas, C. D. & Lennon, J. J. Birds extend their ranges northwards. Nature 399, 213–213 (1999).

    Article  CAS  Google Scholar 

  19. Chen, I. C. et al. Asymmetric boundary shifts of tropical montane Lepidoptera over four decades of climate warming. Glob. Ecol. Biogeogr. 20, 34–45 (2011).

    Article  Google Scholar 

  20. Pounds, J. A., Fogden, M. P. L. & Campbell, J. H. Biological response to climate change on a tropical mountain. Nature 398, 611–615 (1999).

    Article  CAS  Google Scholar 

  21. Raxworthy, C. J. et al. Extinction vulnerability of tropical montane endemism from warming and upslope displacement: A preliminary appraisal for the highest massif in Madagascar. Glob. Change Biol. 14, 1703–1720 (2008).

    Article  Google Scholar 

  22. McCain, C. & Colwell, R. Assessing the threat to montane biodiversity from discordant shifts in temperature and precipitation in a changing climate. Ecol. Lett. 12, 1236–1245 (2011).

    Article  Google Scholar 

  23. Jain, S., Lall, U. & Mann, M. E. Seasonality and interannual variations of northern hemisphere temperature: Equator-to-pole gradient and ocean-land contrast. J. Clim. 12, 1086–1100 (1999).

    Article  Google Scholar 

  24. Jentsch, A., Kreyling, J. & Beierkuhnlein, C. A new generation of climate-change experiments: Events, not trends. Front. Ecol. Environ. 5, 365–374 (2007).

    Article  Google Scholar 

  25. MacArthur, R. H. Geographical Ecology (Harper & Row, 1972).

    Google Scholar 

  26. Tittensor, D. P. et al. Global patterns and predictors of marine biodiversity across taxa. Nature 466, 1098–1101 (2010).

    Article  CAS  Google Scholar 

  27. Jennings, S. in Aquatic Food Webs: An Ecosystem Approach (eds Belgrano, A., Scharler, U. M., Dunne, J. & Ulanowicz, R. E.) (Oxford Univ. Press, 2005).

    Google Scholar 

  28. Webb, T. J., Dulvy, N. K., Jennings, S. & Polunin, N. V. C. The birds and the seas: Body size reconciles differences in the abundance-occupancy relationship across marine and terrestrial vertebrates. Oikos 120, 537–549 (2011).

    Article  Google Scholar 

  29. Loehle, C. Height growth rate tradeoffs determine northern and southern range limits for trees. J. Biogeogr. 25, 735–742 (1998).

    Article  Google Scholar 

  30. Sunday, J. M., Bates, A. E. & Dulvy, N. K. Global analysis of thermal tolerance and latitude in ectotherms. Proc. R. Soc. Lond. Ser. B 278, 1823–1830 (2011).

    Article  Google Scholar 

  31. Global Biodiversity Information Facility; available at http://data.gbif.org.

  32. Pitt, N. R., Poloczanska, E. S. & Hobday, A. J. Climate-driven range changes in Tasmanian intertidal fauna. Mar. Freshwater Res. 61, 963–970 (2010).

    Article  CAS  Google Scholar 

  33. Beaugrand, G., Luczak, C. & Edwards, M. Rapid biogeographical plankton shifts in the North Atlantic Ocean. Glob. Change Biol. 15, 1790–1803 (2009).

    Article  Google Scholar 

  34. Sagarin, R. D., Barry, J. P., Gilman, S. E. & Baxter, C. H. Climate-related change in an intertidal community over short and long time scales. Ecol. Monogr. 69, 465–490 (1999).

    Article  Google Scholar 

  35. Perry, A. L., Low, P. J., Ellis, J. R. & Reynolds, J. D. Climate change and distribution shifts in marine fishes. Science 308, 1912–1915 (2005).

    Article  CAS  Google Scholar 

  36. Nye, J. A., Link, J. S., Hare, J. A. & Overholtz, W. J. Changing spatial distribution of fish stocks in relation to climate and population size on the Northeast United States continental shelf. Mar. Ecol. Prog. Ser. 393, 111–129 (2009).

    Article  Google Scholar 

  37. Poulard, J-C. & Blanchard, F. The impact of climate change on the fish community structure of the eastern continental shelf of the Bay of Biscay. ICES J. Mar. Sci. 62, 1436–1443 (2005).

    Article  Google Scholar 

  38. Lynam, C. P., Cusack, C. & Stokes, D. A methodology for community-level hypothesis testing applied to detect trends in phytoplankton and fish communities in Irish waters. Estuar. Coast. Shelf Sci. 87, 451–462 (2010).

    Article  Google Scholar 

  39. Hickling, R., Roy, D. B., Hill, J. K. & Thomas, C. D. A northward shift of range margins in British Odonata. Glob. Change Biol. 11, 502–506 (2005).

    Article  Google Scholar 

  40. Parmesan, C. et al. Poleward shifts in geographical ranges of butterfly species associated with regional warming. Nature 399, 579–583 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to R. Colwell, R. Huey, W. Palen, J. Reynolds, G. Quinn, A. Mooers, P. Molloy, M.J.J. Jorda, D. Redding, R. Trebilco, M. Hart, C. Keever and the Earth2Ocean laboratory for constructive criticism. This work was supported by the Natural Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study design and formulation of hypotheses. J.M.S. collected latitudinal range and thermal tolerance data and performed the data analyses. A.E.B. reviewed the literature of temperature-driven range shifts and J.M.S. compiled these data for presentation. All authors wrote the manuscript.

Corresponding author

Correspondence to Jennifer M. Sunday.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sunday, J., Bates, A. & Dulvy, N. Thermal tolerance and the global redistribution of animals. Nature Clim Change 2, 686–690 (2012). https://doi.org/10.1038/nclimate1539

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1539

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing