Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Black-carbon reduction of snow albedo

Abstract

Climate models indicate that the reduction of surface albedo caused by black-carbon contamination of snow contributes to global warming and near-worldwide melting of ice1,2. In this study, we generated and characterized pure and black-carbon-laden snow in the laboratory and verified that black-carbon contamination appreciably reduces snow albedo at levels that have been found in natural settings1,3,4. Increasing the size of snow grains in our experiments decreased snow albedo and amplified the radiative perturbation of black carbon, which justifies the aging-related positive feedbacks that are included in climate models. Moreover, our data provide an extensive verification of the Snow, Ice and Aerosol Radiation model1, which will be included in the next assessment of the Intergovernmental Panel on Climate Change5.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral albedo of snow of different Reff measured in our experiments (dots) and modelled using SNICAR (shaded bands).
Figure 2: Spectrally weighted snow albedo over the 300–2,500 nm solar spectrum: derived from our experiments (dots, ±1 standard deviation) and modelled using SNICAR (shaded bands).
Figure 3: Snow-albedo reduction attributed to BC computed as the albedo of pure snow minus the albedo of BC-contaminated snow for a 0° solar zenith angle (unless otherwise noted).

Similar content being viewed by others

References

  1. Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112, D11202 (2007).

    Article  Google Scholar 

  2. Hansen, J. & Nazarenko, L. Soot climate forcing via snow and ice albedos. Proc. Natl Acad. Sci. USA 101, 423–428 (2004).

    Article  CAS  Google Scholar 

  3. Clarke, A. D. & Noone, K. J. Soot in the arctic snowpack—a cause for perturbations in radiative-transfer. Atmos. Environ. 19, 2045–2053 (1985).

    Article  Google Scholar 

  4. Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D. & Brandt, R. E. Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys. 10, 11647–11680 (2010).

    Article  CAS  Google Scholar 

  5. Collins, W. D. et al. The formulation and atmospheric simulation of the Community Atmosphere Model version 3 (CAM3). J. Clim. 19, 2144–2161 (2006).

    Article  Google Scholar 

  6. Quinn, P. K. et al. Short-lived pollutants in the Arctic: Their climate impact and possible mitigation strategies. Atmos. Chem. Phys. 8, 1723–1735 (2008).

    Article  CAS  Google Scholar 

  7. Grenfell, T. C., Light, B. & Sturm, M. Spatial distribution and radiative effects of soot in the snow and sea ice during the SHEBA experiment. J. Geophys. Res. 107, D8032 (2002).

    Article  Google Scholar 

  8. Warren, S. G. & Wiscombe, W. J. A model for the spectral albedo of snow. 2. Snow containing atmospheric aerosols. J. Atmos. Sci. 37, 2734–2745 (1980).

    Article  Google Scholar 

  9. Chylek, P., Ramaswamy, V. & Srivastava, V. Graphitic carbon content of aerosols, clouds and snow, and its climatic implications. Sci. Total Environ. 36, 117–120 (1984).

    Article  CAS  Google Scholar 

  10. Colbeck, S. C. An overview of seasonal snow metamorphism. Rev. Geophys. 20, 45–61 (1982).

    Article  Google Scholar 

  11. Flanner, M. G. & Zender, C. S. Linking snowpack microphysics and albedo evolution. J. Geophys. Res. 111, D12208 (2006).

    Article  Google Scholar 

  12. Qu, X. & Hall, A. What controls the strength of snow-albedo feedback? J Clim. 20, 3971–3981 (2007).

    Article  Google Scholar 

  13. Brandt, R. E., Warren, S. G. & Clarke, A. D. A controlled snowmaking experiment testing the relation between black-carbon content and reduction of snow albedo. J. Geophys. Res. 116, D08109 (2011).

    Article  Google Scholar 

  14. Jacobson, M. Z. Climate response of fossil fuel and biofuel soot, accounting for soot’s feedback to snow and sea ice albedo and emissivity. J. Geophys. Res. 109, D21201 (2004).

    Article  Google Scholar 

  15. Grenfell, T. C., Warren, S. G. & Mullen, P. C. Reflection of solar-radiation by the antarctic snow surface at ultraviolet, visible, and near-infrared wavelengths. J. Geophys. Res. 99, 18669–18684 (1994).

    Article  Google Scholar 

  16. Wiscombe, W. J. & Warren, S. G. A model for the spectral albedo of snow. 1. Pure snow. J. Atmos. Sci. 37, 2712–2733 (1980).

    Article  Google Scholar 

  17. Conway, H., Gades, A. & Raymond, C. F. Albedo of dirty snow during conditions of melt. Wat. Resour. Res. 32, 1713–1718 (1996).

    Article  Google Scholar 

  18. Chylek, P. et al. Aerosol and graphitic carbon content of snow. J. Geophys. Res. 92, 9801–9809 (1987).

    Article  CAS  Google Scholar 

  19. Hadley, O. L., Corrigan, C. E., Kirchstetter, T. W., Cliff, S. S. & Ramanathan, V. Measured black carbon deposition on the Sierra Nevada snow pack and implication for snow pack retreat. Atmos. Chem. Phys. 10, 7505–7513 (2010).

    Article  CAS  Google Scholar 

  20. Bohren, C. F. Applicability of effective-medium theories to problems of scattering and absorption by nonhomogeneous atmospheric particles. J. Atmos. Sci. 43, 468–475 (1986).

    Article  Google Scholar 

  21. Bond, T. C. & Bergstrom, R.W. Light absorption by carbonaceous particles: An investigative review. Aerosol Sci. Technol. 40, 27–67 (2006).

    Article  CAS  Google Scholar 

  22. Moffet, R. C. & Prather, K. A. In-situ measurements of the mixing state and optical properties of soot with implications for radiative forcing estimates. Proc. Natl Acad. Sci. USA 106, 11872–11877 (2009).

    Article  CAS  Google Scholar 

  23. Warren, S. G. & Wiscombe, W. J. Dirty snow after nuclear-war. Nature 313, 467–470 (1985).

    Article  CAS  Google Scholar 

  24. Aoki, T. et al. Effects of snow physical parameters on spectral albedo and bidirectional reflectance of snow surface. J. Geophys. Res. 105, 10219–10236 (2000).

    Article  CAS  Google Scholar 

  25. Kirchstetter, T. W. & Novakov, T. Controlled generation of black carbon particles from a diffusion flame and applications in evaluating black carbon measurement methods. Atmos. Environ. 41, 1874–1888 (2007).

    Article  CAS  Google Scholar 

  26. Chughtai, A. R., Brooks, M. E. & Smith, D. M. Hydration of black carbon. J. Geophys. Res. 101, 19505–19514 (1996).

    Article  CAS  Google Scholar 

  27. Zuberi, B., Johnson, K. S., Aleks, G. K., Molina, L. T. & Laskin, A. Hydrophilic properties of aged soot. Geophys. Res. Lett. 32, L01807 (2005).

    Article  Google Scholar 

  28. Levinson, R., Akbari, H. & Berdahl, P. Measuring solar reflectance-Part II: Review of practical methods. Sol. Energ. 84, 1745–1759 (2010).

    Article  Google Scholar 

  29. Gallet, J. C., Domine, F., Zender, C. S. & Picard, G. Measurement of the specific surface area of snow using infrared reflectance in an integrating sphere at 1310 and 1550 nm. Cryosphere 3, 167–182 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Public Interest Energy Research programme of the California Energy Commission and the Atmospheric Systems Research programme of the Department of Energy, Office of Biological and Environmental Research. O.L.H. received financial support from the E.O. Lawrence Fellowship at Lawrence Berkeley National Laboratory. We thank M. Flanner for providing an executable version of the SNICAR model online and modifying it to accommodate our analysis, C. Preble for assistance in our laboratory and T. Novakov for more than a decade of encouragement.

Author information

Authors and Affiliations

Authors

Contributions

O.L.H. conducted the experiments, ran the model simulations and analysed the data with guidance from T.W.K. O.L.H. and T.W.K. designed the experiments and co-wrote the manuscript.

Corresponding author

Correspondence to Odelle L. Hadley.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hadley, O., Kirchstetter, T. Black-carbon reduction of snow albedo. Nature Clim Change 2, 437–440 (2012). https://doi.org/10.1038/nclimate1433

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1433

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing