Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Realizing the electric-vehicle revolution

Abstract

Full battery electric vehicles (BEVs) have become an important policy option to mitigate climate change, but there are major uncertainties in the scale and timing of market diffusion. Although there has been substantial work showing the potential energy and climate benefits of BEVs, demand-side factors, such as consumer behaviour, are less recognized in the debate. We show the importance of assessing BEV diffusion from an integrated perspective, focusing on key interactions between technology and behaviour across different scales, including power-system demand, charging infrastructure, vehicle performance, driving patterns and individual adoption behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Global transport carbon emissions and energy use.
Figure 2: Proportion of passenger-car tailpipe CO2 emissions as a function of trip journey purpose in the UK for 1996 and 2006.
Figure 3: Consumer price expectations for BEV adoption.

Similar content being viewed by others

References

  1. International Energy Agency World Energy Outlook (IEA, 2010).

  2. International Energy Agency Energy Technology Perspectives (IEA, 2008).

  3. World Business Council for Sustainable Development Mobility 2030: Meeting the Challenges to Sustainability (WBCSD, 2004).

  4. World Energy Council Transport Technologies and Policy Scenarios to 2050 (WEC, 2007).

  5. J. Rosenfeld . et al. Averting the Next Energy Crisis: The Demand Challenge (McKinsey & Co., 2009).

    Google Scholar 

  6. Organisation for Economic Co-operation and Development Reducing Transport Greenhouse Gas Emissions: Trends and Data (OECD, 2010).

  7. Campanari, S., Manzolini, G. & Garcia de la Iglesia, F. Energy analysis of electric vehicles using batteries or fuel cells through well-to-wheel driving cycle simulations. J. Power Sources 186, 464–477 (2009).

    Article  CAS  Google Scholar 

  8. Demirdöven, N. & Deutch, J. Hybrid cars now, fuel cell cars later. Science 305, 974–976 (2004).

    Article  Google Scholar 

  9. International Energy Agency Transport, Energy and CO2: Moving Towards Sustainability (IEA, 2009).

  10. UK Department of Trade and Industry Meeting the Energy Challenge: A White Paper on Energy (Stationary Office, 2007).

  11. Climate Change Committee Building a Low-Carbon Economy — The UK's Contribution to Tackling Climate Change (Stationary Office, 2008).

  12. Ekins, P., Anandarajah, G., Hughes, N., Kannan, R. & Strachan, N. Carbon Reduction Scenarios. Making the Transition to a Secure and Low-Carbon Energy System: Synthesis Report (UK Energy Research Centre, 2009).

    Google Scholar 

  13. HM Treasury The King Review of Low-Carbon Cars (Stationary Office, 2007).

  14. Fontaras, G. & Samaras, Z. On the way to 130 gCO2/km — Estimating the future characteristics of the average European passenger car. Energ. Policy 38, 1826–1833 (2010).

    Article  Google Scholar 

  15. International Energy Agency Tackling Investment Challenges in Power Generation (IEA, 2007).

  16. Doucette, R. T. & McCulloch, M. D. Modeling the CO2 emissions from battery electric vehicles given the power generation of different countries. Energ. Policy 39, 803–911 (2011).

    Article  Google Scholar 

  17. Hawkes, A. D. Estimating marginal CO2 emissions rates for national electricity systems. Energ. Policy 38, 5977–5987 (2010).

    Article  Google Scholar 

  18. Kannan, R. Uncertainties in key low carbon power generation technologies — implication for UK decarbonisation targets. App. Energ. 86, 1873–1886 (2009).

    Article  CAS  Google Scholar 

  19. Service, R. F. Hydrogen cars: Fad or the future? Science 324, 1257 (2009).

    Article  CAS  Google Scholar 

  20. UK Department for Transport Investigation into the Scope for the Transport Sector to Switch to Electric Vehicles and Plug-in Hybrid Vehicles (UK Department for Transport, 2008).

  21. Skea, J., Ekins, P. & Winskel, M. (eds) Energy 2050: Making the Transition to a Secure Low Carbon Energy System (Eathscan, 2011).

    Google Scholar 

  22. Druckman, A. & Jackson, T. Household energy consumption in the UK: A highly geographically and socio-economically disaggregated model. Energ. Policy 36, 3177–3192 (2008).

    Article  Google Scholar 

  23. Lemoine, D. M., Kammen, D. M. & Farrell, A. E. An innovation and policy agenda for commercially competitive plug-in hybrid electric vehicles. Environ. Res. Lett. 3, 014003 (2008).

    Article  Google Scholar 

  24. Kintner-Meyer, M., Schneider, K. & Pratt, R. Impacts Assessment of Plug-in Hybrid Vehicles on Electric Utilities and Regional US Power Grids — Part 1: Technical Analysis (Pacific Northwest National Laboratory, 2007).

    Google Scholar 

  25. Schneider, K., Gerkensmeyer, C., Kintner-Meyer, M. & Fletcher, R. Impact assessment of plug-in hybrid vehicles on Pacific Northwest distribution systems. IEEE Power Energ. Soc. 1–6 (2008).

  26. Stephan, C. H. & Sullivan, J. Environmental and energy implications of plug-in hybrid-electric vehicles. Environ. Sci. Technol. 42, 1185–1190 (2008).

    Article  CAS  Google Scholar 

  27. Deloitte Gaining Traction: A Customer View of Electric Vehicle Mass Adoption in the US Automotive Market. US Survey of Vehicle Owners (Deloitte Development LLC, 2010).

  28. Li, Y. Scenario-based analysis on the impacts of plug-in hybrid electric vehicles' (PHEV) penetration into the transportation sector. IEEE Technol. Sol. Mag. 1–6 (2007).

  29. Yu, X. Impacts assessment of PHEV charge profiles on generation expansion using national energy modeling system. IEEE Power Energ. Soc. 1–5 (2008).

  30. Letendre, S. & Watts, R. A. Effects of Plug-In Hybrid Electric Vehicles on the Vermont Electric Transmission System 09-2542 (Transportation Research Board, 2009).

    Google Scholar 

  31. Sioshansi, R. & Denholm, P. Emissions impacts and benefits of plug-in hybrid electric vehicles and vehicle-to-grid services. Environ. Sci. Technol. 43, 1199–1204 (2009).

    Article  CAS  Google Scholar 

  32. Blumsack, S., Samaras, C. & Hines, P. Long-term electric system investments to support plug-in hybrid electric vehicles. IEEE Power Energ. Soc. 1–6 (2008).

  33. McCarthy, R. W., Yang, C. & Ogden, J. Impacts of Electric-Drive Vehicles on California's Energy System UCD-ITS-RP-08-24 (Univ. California, Davis, 2008).

    Google Scholar 

  34. Denholm, P. & Short, W. An Evaluation of Utility System Impacts and Benefits of Optimally Dispatched Plug-In Hybrid Electric Vehicles TP-620-40293 (National Renewable Energy Laboratory, 2006).

    Book  Google Scholar 

  35. Hadley, S. W. & Tsvetkova, A. Evaluating the Impact of Plug-In Hybrid Electric Vehicles on Regional Power Generation ORNL/TM-2007/150 (Oakridge National Laboratory, 2007).

    Google Scholar 

  36. Taylor, J., Maitra, A., Alexander, M., Brooks, D. & Duvall, M. Evaluation of the impact of plug-in electric vehicle loading on distribution system operations. IEEE Power Energ. Soc. 1–6 (2009).

  37. Quinn, C., Zimmerle, D. & Bradley, T. H. The effect of communication architecture on the availability, reliability, and economics of plug-in hybrid electric vehicle-to-grid ancillary services. J. Power Sources 195, 1500–1509 (2010).

    Article  CAS  Google Scholar 

  38. UK Department for Transport Carbon Pathways Analysis: Informing Development of a Carbon Reduction Strategy for the Transport Sector (UK Department for Transport, 2008).

  39. Deloitte Gaining Traction: Will Consumers Ride the Electric Vehicle Wave? European Analysis (Deloitte Global Services Limited, 2011).

  40. Ozaki, R. & Sevastyanova, K. Going hybrid: An analysis of consumer purchase motivations. Energ. Policy 39, 2217–2227 (2011).

    Article  Google Scholar 

  41. Ernst and Young Gauging Interest for Plug-In Hybrid and Electric Vehicles in Select Markets (Ernst and Young Global Automotive Centre, 2010).

  42. International Energy Agency Status Overview of Hybrid and Electric Vehicle Technology: Final report Phase III, Annex VII, IAHEV (IEA, 2007).

  43. Scrosati, B. & Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 195, 2419–2430 (2010).

    Article  CAS  Google Scholar 

  44. Al-Hallaj, S., Prakash, J. & Selman, J. R. Characterization of commercial Li-ion batteries using electrochemical–calorimetric measurements. J. Power Sources 87, 186–194 (2000).

    Article  CAS  Google Scholar 

  45. Selman, J. R., Al-Hallaj, S., Uchida, I., Hirano, Y. Cooperative research on safety fundamentals of lithium batteries. J. Power Sources 98, 726–732 (2001).

    Article  Google Scholar 

  46. Al-Hallaj, S. & Selman, J. R. Thermal modeling of secondary lithium batteries for electric vehicle/hybrid electric vehicle applications, J. Power Sources 110, 341–348 (2002).

    Article  CAS  Google Scholar 

  47. Peterson, S. B. & Whitacre, J. F. Lithium-ion battery cell degradation resulting from realistic vehicle and vehicle-to-grid utilization. J. Power Sources 195, 2385–2392 (2010).

    Article  CAS  Google Scholar 

  48. Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652–657 (2008).

    Article  CAS  Google Scholar 

  49. The Electric Vehicle Study (Zpryme Research and Consulting, 2010).

  50. Greene, D. L., Patterson, P. D., Singh, M. & Li, J. Feebates, rebates and gas-guzzler taxes: A study of incentives for increased fuel economy. Energ. Policy 33, 757–775 (2005).

    Article  Google Scholar 

  51. Michaelis, P. & Zerle, P. From ACEA's voluntary agreement to an emission trading scheme for new passenger cars. J. Environ. Plann. Manage. 49, 435–453 (2006).

    Article  Google Scholar 

  52. UK Department for Transport Assessing the Impact of Graduated Vehicle Excise Duty — Qualitative Research (UK Department for Transport, 2003).

  53. Kahn, M. E. Do greens drive hummers or hybrids? Environmental ideology as a determinant of consumer choice and the aggregate ecological footprint. J. Environ. Econ. Manage. 54, 129–145 (2007).

    Article  Google Scholar 

  54. Timmor, Y. & Katz-Navon, T. Being the same and different: A model explaining new product adoption. J. Consum. Behav. 7, 249–262 (2008).

    Article  Google Scholar 

  55. Rogers, E. M. Diffusion of Innovations 5th edn (Free Press, 2003).

    Google Scholar 

  56. Energy Savings Trust A Review of the Passenger Car Market in the UK Through History to the Present: Driven (Energy Savings Trust, 2008).

  57. Heffner, R., Kurani, K. & Turrentine, T. Symbolism in California's early market for hybrid electric vehicles. Transport Res. D 12, 396–413 (2007).

    Article  Google Scholar 

  58. De Haan, P., Mueller, M. G. & Peters, A. Does the hybrid Toyota Prius lead to rebound effects? Analysis of size and number of cars previously owned by Swiss Prius buyers. Ecol. Econ. 58, 592–605 (2006).

    Article  Google Scholar 

  59. Valente, T. W. Network Models of the Diffusion of Innovations (Hampton, 1995).

    Google Scholar 

  60. Watts, D. J. & Strogatz, S. H. Collective dynamics of 'small-world' networks. Nature 393, 440–442 (1998).

    Article  CAS  Google Scholar 

  61. Strogatz, S. H. Exploring complex networks. Nature 410, 268–276 (2001).

    Article  CAS  Google Scholar 

  62. Watts, D. J. A twenty-first century science. Nature 445, 489 (2007).

    Article  CAS  Google Scholar 

  63. Onnela, J. P. et al. Structure and tie strengths in mobile communication networks. Proc. Natl Acad. Sci. USA 104, 7332–7336 (2007).

    Article  CAS  Google Scholar 

  64. Arala, S., Muchnika, L. & Sundararajana, A. Distinguishing influence-based contagion from homophily-driven diffusion in dynamic networks. Proc. Natl Acad. Sci. USA. 106, 21544–21549 (2009).

    Article  Google Scholar 

  65. Young, H. P. Innovation diffusion in heterogeneous populations: Contagion, social influence, and social learning. Am. Econ. Rev. 99, 1899–1924 (2009).

    Article  Google Scholar 

  66. Brown, S., Pyke, D. & Steenhof, P. Electric vehicles: The role and importance of standards in an emerging market. Energ. Policy 38, 3797–3806 (2010).

    Article  Google Scholar 

  67. Hidrue, M. K., Parsons, G. P., Kempton, W. & Gardner, M. P. Willingness to pay for electric vehicles and their attributes. Resour. Energ. Econ. 33, 686–705 (2011).

    Article  Google Scholar 

  68. Gallagher, K. S. & Muehlegger, E. Giving green to get green? Incentives and consumer adoption of hybrid vehicle technology. J. Environ. Econ. Manage. 61, 1–15 (2011).

    Article  Google Scholar 

  69. Notter, A. et al. Contribution of Li-ion batteries to the environmental impact of electric vehicles. Environ. Sci. Technol. 44, 6550–6556 (2010).

    Article  CAS  Google Scholar 

  70. Sandy Thomas, C. E. How green are electric vehicles? Int. J. Hydrogen Energ. 37, 6053–6062 (2012).

    Article  CAS  Google Scholar 

  71. Kushnir, D. & Sanden, B. A. The time dimension and lithium resource constraints for electric vehicles. Resour. Policy (in the press).

  72. Khayyam, H., Ranjbarzadeh, H. & Marano, V. Intelligent control of vehicle to grid power. J. Power Sources 201, 1–9 (2012).

    Article  CAS  Google Scholar 

  73. Eberle, U. & von Helmolt, R. Sustainable transportation based on electric vehicle concepts: a brief overview. Energ. Environ. Sci. 3, 689–699 (2010).

    Article  CAS  Google Scholar 

  74. Contestabile, M. et al. Battery electric vehicles, hydrogen fuel cells and biofuels. Which will be the winner? Energ. Environ. Sci. 10, 3754–3772 (2011).

    Article  Google Scholar 

  75. Offer, G. J. et al. Techno-economic and behavioural analysis of battery electric, hydrogen fuel cell and hybrid vehicles in a future sustainable road transport system in the UK. Energ. Policy 39, 1939–1950 (2011).

    Article  CAS  Google Scholar 

  76. Huetnik, F. J., van der Vooren, A. & Alkemade, F. Initial infrastructure development strategies for the transition to sustainable mobility. Technol. Forecast. Soc. 77, 1270–1281 (2009).

    Article  Google Scholar 

  77. McNerney, J., Farmer, J. D., Redner, S. & Trancik, J. E. Role of design complexity in technology improvement. Proc. Natl Acad. Sci. USA. 108, 9008–9013 (2011).

    Article  CAS  Google Scholar 

  78. Kahouli-Brahmi, S. Technological learning in energy-environment modeling: A survey. Energ. Policy 36, 138–162 (2008).

    Article  Google Scholar 

  79. Usha Rao, K. & Kishore, V. V. N. A review of technology diffusion models with special reference to renewable energy technologies. Renew. Sustain. Energ. Rev. 14, 1070–1078 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge generous support from the Oxford Martin School for funding this research at the Institute for Carbon and Energy Reduction in Transport (ICERT), University of Oxford, UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martino Tran.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, M., Banister, D., Bishop, J. et al. Realizing the electric-vehicle revolution. Nature Clim Change 2, 328–333 (2012). https://doi.org/10.1038/nclimate1429

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1429

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing