Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

Reconciling top-down and bottom-up modelling on future bioenergy deployment

Abstract

The Intergovernmental Panel on Climate Change's Special Report on Renewable Energy Sources and Climate Change Mitigation (SRREN) assesses the role of bioenergy as a solution to meeting energy demand in a climate-constrained world. Based on integrated assessment models, the SRREN states that deployed bioenergy will contribute the greatest proportion of primary energy among renewable energies and result in greenhouse-gas emission reductions. The report also acknowledges insights from life-cycle assessments, which characterize biofuels as a potential source of significant greenhouse-gas emissions and environmental harm. The SRREN made considerable progress in bringing together contrasting views on indirect land-use change from inductive bottom-up studies, such as life-cycle analysis, and deductive top-down assessments. However, a reconciliation of these contrasting views is still missing. Tackling this challenge is a fundamental prerequisite for future bioenergy assessment.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Precision and completeness of bioenergy evaluation.
Figure 2: Technical bioenergy potential and deployment scenarios for 2050.
Figure 3: Greenhouse-gas emissions of bioenergy deployment.
Figure 4: Towards a hierarchical modelling framework that is policy relevant.

Similar content being viewed by others

References

  1. Van Vuuren, D., van Vliet, J. & Stehfest, E. Future bio-energy potential under various natural constraints. Energ. Policy 37, 4220–4230 (2009).

    Article  Google Scholar 

  2. Leimbach, M. et al. Technological change and international trade — Insights from REMIND.-R. Energ. J. 31, 109–136 (2010).

    Article  Google Scholar 

  3. Fargione, J. et al. Land clearing and the biofuel carbon debt. Science 319, 1235–1238 (2008).

    Article  CAS  Google Scholar 

  4. Gibbs, H. K. et al. Carbon payback times for crop-based biofuel expansion in the tropics: The effects of changing yield and technology. Environ. Res. Lett. 3, 034001 (2008).

    Article  Google Scholar 

  5. Searchinger, T. et al. Use of US croplands for biofuels increases greenhouse gases through emissions from land-use change. Science 319, 1238–1240 (2008).

    Article  CAS  Google Scholar 

  6. Plevin, R. J. et al. Greenhouse gas emissions from biofuels' indirect land use change are uncertain but may be much greater than previously estimated. Environ. Sci. Technol. 44, 8015–8021 (2010).

    Article  CAS  Google Scholar 

  7. Fargione, J., Plevin, R. J. & Hill, J. The ecological impact of biofuels. Annu. Rev. Ecol. Evol. Syst. 41, 351–377 (2010).

    Article  Google Scholar 

  8. IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O., Pichs-Madruga, R., Sokona, Y. & Seyboth, K.) (Cambridge Univ. Press, 2011).

  9. Chum, H. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O., Pichs-Madruga, R., Sokona, Y. & Seyboth, K.) 209–332 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  10. Sathaye, J. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O., Pichs-Madruga, R., Sokona, Y. & Seyboth, K.) 707–790 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  11. Fischedick, M. et al. in IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation (eds Edenhofer, O., Pichs-Madruga, R., Sokona, Y. & Seyboth, K.) 791–864 (Cambridge Univ. Press, 2011).

    Book  Google Scholar 

  12. Hertel, T. W. et al. Effects of US maize ethanol on global land use and greenhouse gas emissions: Estimating market-mediated responses. BioScience 60, 223–231 (2010).

    Article  Google Scholar 

  13. Lapola, D. M. et al. Indirect land-use changes can overcome carbon savings from biofuels in Brazil. Proc. Natl Acad. Sci. USA 107, 3388–3393 (2010).

    Article  CAS  Google Scholar 

  14. Al-Riffai, P., Dimaranan, B. & Laborde, D. Global Trade and Environmental Impact Study of the EU Biofuels Mandate (International Food Policy Research Institute, 2010).

    Google Scholar 

  15. Anderson-Teixeira, K. J. & Delucia, E. H. The greenhouse gas value of ecosystems. Glob. Change Biol. 17, 425–438 (2010).

    Article  Google Scholar 

  16. Kim, S. & Dale, B. E. Indirect land use change for biofuels: Testing predictions and improving analytical methodologies. Biomass Bioenerg. 35, 3235–3240 (2011).

    Article  Google Scholar 

  17. Thompson, W., Whistance, J. & Meyer, S. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions. Energ. Policy 39, 5509–5518 (2011).

    Article  Google Scholar 

  18. Rajagopal, D., Hochman, G. & Zilberman, D. Indirect fuel use change (IFUC) and the lifecycle environmental impact of biofuel policies. Energ. Policy 39, 228–233 (2011).

    Article  Google Scholar 

  19. McKone, T. E. et al. Grand challenges for life-cycle assessment of biofuels. Environ. Sci. Technol. 45, 1751–1756 (2011).

    Article  CAS  Google Scholar 

  20. Hoefnagels, R., Smeets, E. & Faaij, A. Greenhouse gas footprints of different biofuel production systems. Renew. Sust. Energ. Rev. 14, 1661–1694 (2010).

    Article  CAS  Google Scholar 

  21. Edwards, R., Szekeres, S., Neuwahl, F. & Mahieu, V. Biofuels in the European Context: Facts and Uncertainties (European Commission, Joint Research Centre, 2008).

    Google Scholar 

  22. International Energy Agency Sustainable Production of Second-Generation Biofuels: Potential and Perspectives in Major Economies and Developing Countries (IEA, 2010).

  23. Brander, M. et al. Methodology and Evidence Base on the Indirect Greenhouse Gas Effects of Using Wastes, Residues, and By-products for Biofuels and Bioenergy (Renewable Fuels Agency and Department for Energy and Climate Change, 2009).

    Google Scholar 

  24. Richard, T. L. Challenges in scaling up biofuels infrastructure. Science 329, 793–796 (2010).

    Article  CAS  Google Scholar 

  25. Tilman, D. et al. Beneficial biofuels — The food, energy, and environment trilemma. Science 325, 270–271 (2009).

    Article  CAS  Google Scholar 

  26. Service, R. F. Is there a road ahead for cellulosic ethanol? Science 329, 784–785 (2010).

    Article  CAS  Google Scholar 

  27. Azar, C., Lindgren, K., Larson, E. & Möllersten, K. Carbon capture and storage from fossil fuels and biomass — Costs and potential role in stabilizing the atmosphere. Climatic Change 74, 47–79 (2006).

    Article  CAS  Google Scholar 

  28. Riahi, K., Grübler, A. & Nakicenovic, N. Scenarios of long-term socio-economic and environmental development under climate stabilization. Technol. Forecast. Soc. 74, 887–935 (2007).

    Article  Google Scholar 

  29. Edenhofer, O. et al. The economics of low stabilization: Model comparison of mitigation strategies and costs. Energ. J. 31 (Special Issue 1), 11–48 (2010).

    Google Scholar 

  30. Dornburg, V. et al. Bioenergy revisited: Key factors in global potentials of bioenergy. Energ. Environ. Sci. 3, 258–267 (2010).

    Article  Google Scholar 

  31. German Advisory Council on Global Change World in Transition Future Bioenergy and Sustainable Land Use (WBGU, 2009).

  32. Beringer, T., Lucht, W. & Schaphoff, S. Bioenergy production potential of global biomass plantations under environmental and agricultural constraints. GCB Bioenerg. 3, 299–312 (2011).

    Article  CAS  Google Scholar 

  33. Haberl, H. et al. The global technical potential of bio-energy in 2050 considering sustainability constraints. Curr. Opin. Environ. Sust. 2, 394–403 (2010).

    Article  Google Scholar 

  34. Erb, K-H. et al. Eating the Planet: Feeding and Fuelling the World Sustainably, Fairly and Humanely — A Scoping Study (Institute of Social Ecology and PIK Potsdam, 2009).

    Google Scholar 

  35. Van Vuuren, D. et al. Exploring IMAGE model scenarios that keep greenhouse gas radiative forcing below 3 W/m2 in 2100. Energ. Econ. 32, 1105–1120 (2010).

    Article  Google Scholar 

  36. Lotze-Campen, H. et al. Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade. Ecol. Model. 221, 2188–2196 (2009).

    Article  Google Scholar 

  37. Smeets, E. M. W., Faaij, A. P. C., Lemandowski, I. & Turkenburg, W. A bottom-up assessment and review of global bio-energy potentials to 2050. Prog. Energ. Combust. 33, 56–106 (2007).

    Article  CAS  Google Scholar 

  38. Hoogwijk, M. et al. Potential of biomass energy out to 2100, for four IPCC SRES land-use scenarios. Biomass Bioenerg. 29, 225–257 (2005).

    Article  Google Scholar 

  39. Sims, R. E. H. et al. Energy crops: Current status and future prospects. Glob. Change Biol. 12, 2054–2076 (2006).

    Article  Google Scholar 

  40. Field, C. B., Campbell, J. E. & Lobell, D. B. Biomass energy: The scale of the potential resource. Trends Ecol. Evol. 23, 65–72 (2008).

    Article  Google Scholar 

  41. Campbell, J. E., Lobell, D. B., Genova, R. C. & Field, C. B. The global potential of bioenergy on abandoned agriculture lands. Environ. Sci. Technol. 42, 5791–5794 (2008).

    Article  CAS  Google Scholar 

  42. Food & Agriculture Organization of the United Nations Statistical Database http://faostat.fao.org (FAOSTAT 2009).

  43. Fischer, R. A. & Edmeades, G. O. Breeding and cereal yield progress. Crop Sci. 50, 85–98 (2010).

    Article  Google Scholar 

  44. Licker, R. et al. Mind the gap: How do climate and agricultural management explain the 'yield gap' of croplands around the world? Glob. Ecol. Biogeogr. 19, 769–782 (2010).

    Article  Google Scholar 

  45. Wise, M. et al. Implications of limiting CO2 concentrations for land use and energy. Science 324, 1183–1186 (2009).

    Article  CAS  Google Scholar 

  46. Bruinsma, J. World Agriculture: Towards 2015/2030. An FAO Perspective (Food and Agriculture Organization, 2003).

    Google Scholar 

  47. Popp, A. et al. The potential contribution of bioenergy to climate change mitigation including its costs and side effects. Environ. Res. Lett. 6, 034017 (2011).

    Article  Google Scholar 

  48. Melillo, J. M. et al. Indirect emissions from biofuels: How important? Science 326, 1397–1399 (2009).

    Article  CAS  Google Scholar 

  49. Sokolov, A. P. et al. Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. J. Clim. 22, 5175–5204 (2009).

    Article  Google Scholar 

  50. Krey, V. & Clarke, L. Role of renewable energy in climate mitigation: A synthesis of recent scenarios. Clim. Policy 11, 1131–1158 (2011).

    Article  Google Scholar 

  51. Reilly, J. & Paltsev, S. in Economic Analysis of Land Use in Global Climate Change Policy (eds Rose, S., Hertel, T., & Tol, R.) 184–207 (Routledge, 2009).

    Google Scholar 

  52. Gurgel, A., Reilly, J. & Paltsev, S. Potential land use implications of a global biofuels industry. J. Agr. Food Ind. Organ. 5, http://dx.doi.org/10.2202/1542-0485.1202 (2007).

  53. Vuuren, D. van. et al. Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change 81, 119–159 (2007).

    Article  CAS  Google Scholar 

  54. Calvin, K. et al. Limiting climate change to 450 ppm CO2 equivalent in the 21st century. Energ. Econ. 31, S107–S120 (2009).

    Article  Google Scholar 

  55. Luderer, G. et al. The economics of decarbonizing the energy system — Results and insights from the RECIPE model intercomparison. Climatic Change http://dx.doi.org/10.1007/s10584-011-0105-x (2011).

  56. Popp, A. et al. On sustainability of bioenergy production: Integrating co-emissions from agricultural intensification. Biomass Bioenerg. 35, 4770–4780 (2010).

    Article  Google Scholar 

  57. Meinshauen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 °C. Nature 458, 1158–1163 (2009).

    Article  Google Scholar 

  58. Ackerman, F., DeCanio, S. J., Howarth, R. B. & Sheeran, K. Limitations of integrated assessment models of climate change. Climatic Change 95, 297–315 (2009).

    Article  CAS  Google Scholar 

  59. Cullenward, D., Schipper, L., Sudarshan, A. & Howarth, R. Psychohistory revisited: fundamental issues in forecasting climate futures. Climatic Change 104, 457–472 (2011).

    Article  Google Scholar 

  60. Socolow, R. High-consequence outcomes and internal disagreements: Tell us more, please. Climatic Change 108, 775–790 (2011).

    Article  Google Scholar 

  61. Putnam, H. The Collapse of the Fact/Value Dichotomy. And other Essays (Harvard Univ. Press, 2004).

    Google Scholar 

  62. Habermas, J. Technik und Wissenschaft als Ideologie (Suhrkamp, 1968).

    Book  Google Scholar 

  63. Edenhofer, O. & Seyboth, K. in Encyclopedia of Energy, Natural Resource and Environmental Economics (ed. Shogren, J. F.) (Elsevier, in the press).

  64. Mastrandrea, M. et al. The IPCC AR5 guidance note on consistent treatment of uncertainties: a common approach across the working groups. Climatic Change 108, 675–691 (2011).

    Article  Google Scholar 

  65. Pidgeon, N. & Fischhoff, B. The role of social and decision sciences in communicating uncertain climate risks. Nature Clim. Change 1, 35–41 (2011).

    Article  Google Scholar 

  66. Lange, M. The GHG balance of biofuels taking into account land use change. Energ. Policy 5, 2373–2385 (2011).

    Article  Google Scholar 

  67. Creutzig, F., McGlynn, E., Minx, J. & Edenhofer, O. Climate policies for road transport revisited (I): Evaluation of the current framework. Energ. Policy 39, 2396–2406 (2011).

    Article  CAS  Google Scholar 

  68. Soimakallio, S. & Koponen, K. How to ensure greenhouse gas emission reductions by increasing the use of biofuels? — Suitability of the European Union sustainability criteria. Biomass Bioenerg. 35, 3504–3513 (2011).

    Article  Google Scholar 

  69. Havlík, P. et al. Global land-use implications of first and second generation biofuel targets. Energ. Policy 39, 5690–5702 (2011).

    Article  Google Scholar 

  70. Sims, R. E. H., Mabee, W., Saddler, J. N. & Taylor, M. An overview of second generation biofuel technologies. Bioresource Technol. 101, 1570–1580 (2010).

    Article  CAS  Google Scholar 

  71. Plevin, R. J. Life Cycle Regulation of Transportation Fuels: Uncertainty and its Policy Implications PhD thesis, Univ. California, Berkeley (2010).

    Google Scholar 

  72. DeCicco, J. M. Addressing Biofuel GHG Emissions in the Context of a Fossil-Based Carbon Cap (University of Michigan, School of Natural Resources and Environment, 2009).

    Google Scholar 

  73. Morton, D. C. et al. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proc. Natl Acad. Sci. USA 103, 14637–14641 (2006).

    Article  CAS  Google Scholar 

  74. Van Dam, J., Junginger, M. & Faaij, A. P. C. From the global efforts on certification of bioenergy towards an integrated approach based on sustainable land use planning. Renew. Sust. Energ. Rev. 14, 2445–2472 (2010).

    Article  Google Scholar 

  75. McMichael, A. J., Powles, J. W., Butler, C. D. & Uauy, R. Food, livestock production, energy, climate change, and health. Lancet 370, 1253–1263 (2007).

    Article  Google Scholar 

  76. Creutzig, F. & He, D. Climate change mitigation and co-benefits of feasible transport demand policies in Beijing. Transport. Res. D 14, 120–131 (2009).

    Article  Google Scholar 

  77. Stehfest, E. et al. Climate benefits of changing diet. Climatic Change 95, 83–102 (2009).

    Article  CAS  Google Scholar 

  78. Popp, A., Lotze-Campen, H. & Bodirsky, B. Food consumption, diet shifts and associated non-CO2 greenhouse gases from agricultural production. Glob. Environ. Change 20, 451–462 (2010).

    Article  Google Scholar 

  79. Cassman, K. G. Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proc. Natl Acad. Sci. USA 96, 5952–5959 (1999).

    Article  CAS  Google Scholar 

  80. Schlenker, W. & Lobell, D. B. Robust negative impacts of climate change on African agriculture. Environ. Res. Lett. 5, 014010 (2010).

    Article  Google Scholar 

  81. Lobell, D. B., Bänziger, M., Magorokosho, C. & Vivek, B. Nonlinear heat effects on African maize as evidenced by historical yield trials. Nature Clim. Change 1, 42–45 (2011).

    Article  Google Scholar 

  82. Tebaldi, C. & Lobell, D. B. Towards probabilistic projections of climate change impacts on global crop yields. Geophys. Res. Lett. 35, 1–6 (2008).

    Article  Google Scholar 

Download references

Acknowledgements

We thank R. Socolow, R. Williams, C. von Stechow and U. Fritsche for helpful discussions. We gratefully acknowledge financial support by the Michael Otto Stiftung and the German Federal Ministry of Education and Research funded project GLUES (Global Assessment of Land Use Dynamics, Greenhouse Gas Emissions and Ecosystem Services).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Creutzig.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Reconciling top-down and bottom-up modelling on future bioenergy deployment (PDF 364 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Creutzig, F., Popp, A., Plevin, R. et al. Reconciling top-down and bottom-up modelling on future bioenergy deployment. Nature Clim Change 2, 320–327 (2012). https://doi.org/10.1038/nclimate1416

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1416

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing