Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation

Abstract

Long-term future warming is primarily constrained by cumulative emissions of carbon dioxide1,2,3,4. Previous studies have estimated that humankind has already emitted about 50% of the total amount allowed if warming, relative to pre-industrial, is to stay below 2 °C (refs 1, 2). Carbon dioxide emissions will thus need to decrease substantially in the future if this target is to be met. Here we show how links between near-term decisions, long-term behaviour and climate sensitivity uncertainties constrain options for emissions mitigation. Using a model of intermediate complexity5,6, we explore the implications of non-zero long-term global emissions, combined with various near-term mitigation rates or delays in action. For a median climate sensitivity, a long-term 90% emission reduction relative to the present-day level is incompatible with a 2 °C target within the coming millennium. Zero or negative emissions can be compatible with the target if medium to high emission-reduction rates begin within the next two decades. For a high climate sensitivity, however, even negative emissions would require a global mitigation rate at least as great as the highest rate considered feasible by economic models7,8 to be implemented within the coming decade. Only a low climate sensitivity would allow for a longer delay in mitigation action and a more conservative mitigation rate, and would still require at least 90% phase-out of emissions thereafter.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-term effect of zero emissions.
Figure 2: Long-term effect of non-zero positive and negative long-term emissions.
Figure 3: Global peak temperature accounting for uncertainty in climate sensitivity.

Similar content being viewed by others

References

  1. Allen, M. et al. Warming caused by cumulative carbon emissions towards the trillionth tonne. Nature 458, 1163–1166 (2009).

    Article  CAS  Google Scholar 

  2. Zickfeld, K., Eby, M., Matthews, H. D. & Weaver, A. J. Setting cumulative emissions targets to reduce the risk of dangerous climate change. Proc. Natl Acad. Sci. USA 106, 16129–16134 (2010).

    Article  Google Scholar 

  3. Matthews, H. D., Gillett, N. P., Stott, P. A. & Zickfeld, K. The proportionality of global warming to cumulative carbon emissions. Nature 459, 829–832 (2009).

    Article  CAS  Google Scholar 

  4. Raupach, M. R. et al. The relationship between peak warming and cumulative CO2 emissions, and its use to quantify vulnerabilities in the carbon-climate-human system. Tellus B 63, 145–164 (2011).

    Article  CAS  Google Scholar 

  5. Stocker, T. F., Wright, D. G. & Mysak, L. A. A zonally averaged, coupled ocean-atmosphere model for paleoclimate studies. J. Clim. 5, 773–797 (1992).

    Article  Google Scholar 

  6. Joos, F., Plattner, G-K., Stocker, T. F., Marchal, O. & Schmittner, A. Global warming and marine carbon cycle feedbacks on future atmospheric CO2 . Science 284, 464–467 (1999).

    Article  CAS  Google Scholar 

  7. UNEP The Emissions Gap Report: Are the Copenhagen Accord Pledges Sufficient to Limit Global Warming to 2 °C or 1.5 °C? (UNEP, 2010); available at http://www.unep.org/publications/ebooks/emissionsgapreport/.

  8. den Elzen, M. G. J., van Vuuren, D. P. & van Vliet, J. Postponing emission reductions from 2020 to 2030 increases climate risks and long-term costs. Climatic Change 99, 313–320 (2010).

    Article  Google Scholar 

  9. UNFCCC, Communications Received from Parties in Relation to the Listing in the Chapeau of the Copenhagen Accord (UNFCCC, 2010); available at http://unfccc.int/meetings/cop_15/copenhagen_accord/items/5276.php.

  10. Friedlingstein, P. et al. Update on CO2 emissions. Nature Geosci. 3, 811–812 (2010).

    Article  CAS  Google Scholar 

  11. Hegerl, G. C. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 663–745 (Cambridge Univ. Press, 2007).

    Google Scholar 

  12. Hourcade, J-C. & Crassous, R. Low-carbon societies: A challenging transition for an attractive future. Clim. Policy 8, 607–612 (2008).

    Article  Google Scholar 

  13. Van Vuuren, D. P. et al. Stabilizing greenhouse gas concentrations at low levels: An assessment of reduction strategies and costs. Climatic Change 81, 119–159 (2007).

    Article  Google Scholar 

  14. Van Vuuren, D. P., Bellevrat, E., Kitous, A. & Isaac, M. Bio-energy use and low stabilization scenarios. Energy J. 31, 193–222 (2010).

    Google Scholar 

  15. Van Vuuren, D. P. et al. RCP2.6: Exploring the possibility to keep global mean temperature change below 2 °C. Climatic Change 109, 95–116 (2011).

    Article  Google Scholar 

  16. Edenhofer, O. et al. The economics of low stabilization: Model comparison of mitigation strategies and costs. Energy J. 31, 11–48 (2010).

    Google Scholar 

  17. Clarke, L. et al. International climate policy architectures: Overview of the EMF 22 international scenarios. Energy Econ. 31, S64–S81 (2009).

    Article  Google Scholar 

  18. Edmonds, J., Clarke, L., Lurz, J. & Wise, M. Stabilizing CO2 concentrations with incomplete international cooperation. Clim. Policy 8, 355–376 (2008).

    Article  Google Scholar 

  19. Richels, R., Blanford, G. J. & Rutherford, T. F. International climate policy: A ‘second best’ solution for a ‘second best’ world? Climatic Change 97, 289–296 (2009).

    Article  Google Scholar 

  20. Davis, S. J., Caldeira, K. & Matthews, H. D. Future CO2 emissions and climate change from existing energy infrastructure. Science 329, 1330–1333 (2010).

    Article  CAS  Google Scholar 

  21. Bosetti, V., Carraro, C. & Tavoni, M. Climate change mitigation strategies in fast-growing countries: The benefits of early action. Energy Econ. 31, S144–S151 (2009).

    Article  Google Scholar 

  22. Weaver, A. J., Zickfeld, K., Montenegro, A. & Eby, M. Long term climate implications of 2050 emission reduction targets. Geophys. Res. Lett. 34, L19703 (2007).

    Article  Google Scholar 

  23. Meehl, G. A. et al. in IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) 747–845 (Cambridge Univ. Press, 2007).

    Google Scholar 

  24. Solomon, S., Plattner, G-K., Knutti, R. & Friedlingstein, P. Irreversible climate change due to carbon dioxide emissions. Proc. Natl Acad. Sci. USA 106, 1074–1079 (2009).

    Article  Google Scholar 

  25. Solomon, et al. Persistence of climate changes due to a range of greenhouse gases. Proc. Natl Acad. Sci. USA 107, 18354–18359 (2010).

    Article  CAS  Google Scholar 

  26. Knutti, R. & Hegerl, G. C. The equilibrium sensitivity of the Earth’s temperature to radiation changes. Nature Geosci. 1, 735–743 (2008).

    Article  CAS  Google Scholar 

  27. Lunt, D. J. et al. Earth system sensitivity inferred from Pliocene modeling and data. Nature Geosci. 3, 60–64 (2010).

    Article  CAS  Google Scholar 

  28. Marchal, O., Stocker, T. F. & Joos, F. A latitude-depth circulation-biogeochemical ocean model for paleoclimate studies. Model development and sensitivity. Tellus B 50, 290–316 (1998).

    Article  Google Scholar 

  29. Siegenthaler, U. & Oeschger, H. Biospheric CO2 emissions during the past 200 years reconstructed by convolution of ice core data. Tellus B 39, 140–154 (1987).

    Article  Google Scholar 

  30. Archer, D. Fate of fossil fuel CO2 in geologic time. J. Geophys. Res. 110, C09S05 (2005).

    Article  Google Scholar 

  31. Friedlingstein, P. et al. Climate-carbon cycle feedback analysis: Results from the C4MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  32. Gregory, J. M., Jones, C. D., Cadule, P. & Friedlingstein, P. Quantifying carbon cycle feedbacks. J. Clim. 22, 5232–5250 (2009).

    Article  Google Scholar 

  33. Knutti, R., Stocker, T. F., Joos, F. & Plattner, G-K. Probabilistic climate change projections using neural networks. Clim. Dyn. 21, 257–272 (2003).

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank D. Matthews, J. Daniel and T. Sanford for helpful discussions and R. Flecker for creating Fig. 3.

Author information

Authors and Affiliations

Authors

Contributions

P.F. and S.S. designed the work and the experiments, P.F. performed the model simulations, G-K.P. provided the model code, G-K.P. and R.K. gave guidance on the use of the model, P.F. led the writing of the paper with contributions from all other authors.

Corresponding author

Correspondence to P. Friedlingstein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Friedlingstein, P., Solomon, S., Plattner, GK. et al. Long-term climate implications of twenty-first century options for carbon dioxide emission mitigation. Nature Clim Change 1, 457–461 (2011). https://doi.org/10.1038/nclimate1302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nclimate1302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing