Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A switch III motif relays signaling between a B12 enzyme and its G-protein chaperone

Abstract

Fidelity during cofactor assembly is essential for the proper functioning of metalloenzymes and is ensured by specific chaperones. MeaB, a G-protein chaperone for the coenzyme B12-dependent radical enzyme methylmalonyl-CoA mutase (MCM), uses the energy of GTP binding, hydrolysis or both to regulate cofactor loading into MCM, protect MCM from inactivation and rescue MCM that is inactivated during turnover. Typically, G proteins signal to client proteins using the conformationally mobile switch I and II loops. Crystallographic snapshots of MeaB reported herein reveal a new switch III element that has substantial conformational plasticity. Using alanine-scanning mutagenesis, we demonstrate that the switch III motif is critical for bidirectional signal transmission of the GTPase-activating protein activity of MCM and the chaperone functions of MeaB in the MeaB–MCM complex. Mutations in the switch III loop identified in patients corrupt this interprotein communication and lead to methylmalonic aciduria, an inborn error of metabolism.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crystal structure of MeaB reveals a mobile switch III loop.
Figure 2: Conservation of switch III loop residues.
Figure 3: The pleiotropic effects of switch III mutations.
Figure 4: Switch III loop conformations.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Boal, A.K. & Rosenzweig, A.C. Structural biology of copper trafficking. Chem. Rev. 109, 4760–4779 (2009).

    Article  CAS  Google Scholar 

  2. Gherasim, C., Lofgren, M. & Banerjee, R. Navigating the B12 road: assimilation, delivery and disorders of cobalamin. J. Biol. Chem. 288, 13186–13193 (2013).

    Article  CAS  Google Scholar 

  3. Reddi, A.R., Jensen, L.T. & Culotta, V.C. Manganese homeostasis in Saccharomyces cerevisiae. Chem. Rev. 109, 4722–4732 (2009).

    Article  CAS  Google Scholar 

  4. Korotkova, N. & Lidstrom, M.E. MeaB is a component of the methylmalonyl-CoA mutase complex required for protection of the enzyme from inactivation. J. Biol. Chem. 279, 13652–13658 (2004).

    Article  CAS  Google Scholar 

  5. Dobson, C.M. et al. Identification of the gene responsible for the cblA complementation group of vitamin B12-responsive methylmalonic acidemia based on analysis of prokaryotic gene arrangements. Proc. Natl. Acad. Sci. USA 99, 15554–15559 (2002).

    Article  CAS  Google Scholar 

  6. Padovani, D. & Banerjee, R. A G-protein editor gates coenzyme B12 loading and is corrupted in methylmalonic aciduria. Proc. Natl. Acad. Sci. USA 106, 21567–21572 (2009).

    Article  CAS  Google Scholar 

  7. Dempsey-Nunez, L. et al. High resolution melting analysis of the MMAA gene in patients with cblA and in those with undiagnosed methylmalonic aciduria. Mol. Genet. Metab. 107, 363–367 (2012).

    Article  CAS  Google Scholar 

  8. Banerjee, R. Radical carbon skeleton rearrangements: catalysis by coenzyme B12-dependent mutases. Chem. Rev. 103, 2083–2094 (2003).

    Article  CAS  Google Scholar 

  9. Ledley, F.D., Lumetta, M., Nguyen, P.N., Kolhouse, J.F. & Allen, R.H. Molecular cloning of l-methylmalonyl CoA mutase: gene transfer and analysis of mut cell lines. Proc. Natl. Acad. Sci. USA 85, 3518–3521 (1988).

    Article  CAS  Google Scholar 

  10. Leipe, D.D., Wolf, Y.I., Koonin, E.V. & Aravind, L. Classification and evolution of P-loop GTPases and related ATPases. J. Mol. Biol. 317, 41–72 (2002).

    Article  CAS  Google Scholar 

  11. Padovani, D., Labunska, T. & Banerjee, R. Energetics of interaction between the G-protein chaperone, MeaB and B12-dependent methylmalonyl-CoA mutase. J. Biol. Chem. 281, 17838–17844 (2006).

    Article  CAS  Google Scholar 

  12. Padovani, D. & Banerjee, R. Assembly and protection of the radical enzyme, methylmalonyl-CoA mutase, by its chaperone. Biochemistry 45, 9300–9306 (2006).

    Article  CAS  Google Scholar 

  13. Hennig, S.E., Jeoung, J.H., Goetzl, S. & Dobbek, H. Redox-dependent complex formation by an ATP-dependent activator of the corrinoid/iron-sulfur protein. Proc. Natl. Acad. Sci. USA 109, 5235–5240 (2012).

    Article  CAS  Google Scholar 

  14. Fujii, K., Galivan, J.H. & Huennekens, F.M. Activation of methionine synthase: Further characterization of the flavoprotein system. Arch. Biochem. Biophys. 178, 662–670 (1977).

    Article  CAS  Google Scholar 

  15. Olteanu, H. & Banerjee, R. Human methionine synthase reductase, a soluble P-450 reductase-like dual flavoprotein, is sufficient for NADPH-dependent methionine synthase activation. J. Biol. Chem. 276, 35558–35563 (2001).

    Article  CAS  Google Scholar 

  16. Mori, K., Tobimatsu, T., Hara, T. & Toraya, T. Characterization, sequencing, and expression of the genes encoding a reactivating factor for glycerol-inactivated adenosylcobalamin-dependent diol dehydratase. J. Biol. Chem. 272, 32034–32041 (1997).

    Article  CAS  Google Scholar 

  17. Mori, K., Bando, R., Hieda, N. & Toraya, T. Identification of a reactivating factor for adenosylcobalamin-dependent ethanolamine ammonia lyase. J. Bacteriol. 186, 6845–6854 (2004).

    Article  CAS  Google Scholar 

  18. Mori, K. & Toraya, T. Mechanism of reactivation of coenzyme B12-dependent diol dehydratase by a molecular chaperone–like reactivating factor. Biochemistry 38, 13170–13178 (1999).

    Article  CAS  Google Scholar 

  19. Shibata, N. et al. Release of a damaged cofactor from a coenzyme B12-dependent enzyme: X-ray structures of diol dehydratase-reactivating factor. Structure 13, 1745–1754 (2005).

    Article  CAS  Google Scholar 

  20. Olteanu, H. & Banerjee, R. Redundancy in the pathway for redox regulation of mammalian methionine synthase: reductive activation by the dual flavoprotein, novel reductase 1. J. Biol. Chem. 278, 38310–38314 (2003).

    Article  CAS  Google Scholar 

  21. Sprang, S.R., Chen, Z. & Du, X. Structural basis of effector regulation and signal termination in heterotrimeric Gα proteins. Adv. Protein Chem. 74, 1–65 (2007).

    Article  CAS  Google Scholar 

  22. Hubbard, P.A. et al. Crystal structure and mutagenesis of the metallochaperone MeaB: insight into the causes of methylmalonic aciduria. J. Biol. Chem. 282, 31308–31316 (2007).

    Article  CAS  Google Scholar 

  23. Wittinghofer, A. & Vetter, I.R. Structure-function relationships of the G domain, a canonical switch motif. Annu. Rev. Biochem. 80, 943–971 (2011).

    Article  CAS  Google Scholar 

  24. Gasper, R., Scrima, A. & Wittinghofer, A. Structural insights into HypB, a GTP-binding protein that regulates metal binding. J. Biol. Chem. 281, 27492–27502 (2006).

    Article  CAS  Google Scholar 

  25. Padovani, D., Labunska, T., Palfey, B.A., Ballou, D.P. & Banerjee, R. Adenosyltransferase tailors and delivers coenzyme B12 . Nat. Chem. Biol. 4, 194–196 (2008).

    Article  CAS  Google Scholar 

  26. Padovani, D. & Banerjee, R. A rotary mechanism for coenzyme B12 synthesis by adenosyltransferase. Biochemistry 48, 5350–5357 (2009).

    Article  CAS  Google Scholar 

  27. Yamanishi, M., Vlasie, M. & Banerjee, R. Adenosyltransferase: an enzyme and an escort for coenzyme B12? Trends Biochem. Sci. 30, 304–308 (2005).

    Article  CAS  Google Scholar 

  28. Grishina, G. & Berlot, C.H. Mutations at the domain interface of GSα impair receptor-mediated activation by altering receptor and guanine nucleotide binding. J. Biol. Chem. 273, 15053–15060 (1998).

    Article  CAS  Google Scholar 

  29. Li, Q. & Cerione, R.A. Communication between switch II and switch III of the transducin α subunit is essential for target activation. J. Biol. Chem. 272, 21673–21676 (1997).

    Article  CAS  Google Scholar 

  30. Ahmed, S.F. et al. GNAS1 mutational analysis in pseudohypoparathyroidism. Clin. Endocrinol. 49, 525–531 (1998).

    CAS  Google Scholar 

  31. Lambright, D.G., Noel, J.P., Hamm, H.E. & Sigler, P.B. Structural determinants for activation of the α-subunit of a heterotrimeric G protein. Nature 369, 621–628 (1994).

    Article  CAS  Google Scholar 

  32. Froese, D.S. et al. Structures of the human GTPase MMAA and vitamin B12-dependent methylmalonyl-CoA mutase and insight into their complex formation. J. Biol. Chem. 285, 38204–38213 (2010).

    Article  CAS  Google Scholar 

  33. Takahashi-Íñiguez, T., Garcia-Arellano, H., Trujillo-Roldan, M.A. & Flores, M.E. Protection and reactivation of human methylmalonyl-CoA mutase by MMAA protein. Biochem. Biophys. Res. Commun. 404, 443–447 (2011).

    Article  Google Scholar 

  34. Padovani, D. & Banerjee, R. Alternative pathways for radical dissipation in an active site mutant of B12-dependent methylmalonyl-CoA mutase. Biochemistry 45, 2951–2959 (2006).

    Article  CAS  Google Scholar 

  35. Lofgren, M. & Banerjee, R. Loss of allostery and coenzyme B12 delivery by a pathogenic mutation in adenosyltransferase. Biochemistry 50, 5790–5798 (2011).

    Article  CAS  Google Scholar 

  36. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Meth. Enzymol. 276, 307–326 (1997).

    Article  CAS  Google Scholar 

  37. McCoy, A.J. et al. Phaser crystallographic software. J. Appl. Crystallogr. 40, 658–674 (2007).

    Article  CAS  Google Scholar 

  38. Adams, P.D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002).

    Article  Google Scholar 

  39. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  40. Collaborative Computational Project, Number 4. The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  41. Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  42. Davis, I.W. et al. MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucleic Acids Res. 35, W375–W383 (2007).

    Article  Google Scholar 

  43. The PyMOL Molecular Graphics System v.1.3r1 (Schrodinger LLC, 2010).

Download references

Acknowledgements

This work was supported in part by a grant from the US National Institutes of Health (DK45776).

Author information

Authors and Affiliations

Authors

Contributions

M.L. performed switch III mutant characterization, data analysis and writing; D.P. purified MeaB for crystallization and edited paper; M.K. performed crystallization studies, data analysis and writing; R.B. performed data analysis and writing.

Corresponding author

Correspondence to Ruma Banerjee.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results, Supplementary Figures 1–4 and Supplementary Tables 1–5. (PDF 36608 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lofgren, M., Padovani, D., Koutmos, M. et al. A switch III motif relays signaling between a B12 enzyme and its G-protein chaperone. Nat Chem Biol 9, 535–539 (2013). https://doi.org/10.1038/nchembio.1298

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1298

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing