Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chemical reporters for biological discovery

An Erratum to this article was published on 14 February 2014

This article has been updated

Abstract

Functional tools are needed to understand complex biological systems. Here we review how chemical reporters in conjunction with bioorthogonal labeling methods can be used to image and retrieve nucleic acids, proteins, glycans, lipids and other metabolites in vitro, in cells as well as in whole organisms. By tagging these biomolecules, researchers can now monitor their dynamics in living systems and discover specific substrates of cellular pathways. These advances in chemical biology are thus providing important tools to characterize biological pathways and are poised to facilitate our understanding of human diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Bioorthogonal labeling of biomolecules.
Figure 2: Applications of bioorthogonal chemical reporters.
Figure 3: Chemical reporters for nucleic acid synthesis and modifications.
Figure 4: Amino acid reporters for site- and residue-selective labeling of proteins.
Figure 5: Glycan chemical reporters.
Figure 6: Protein lipidation chemical reporters.
Figure 7: Chemical reporters for other post-translational modifications.

Similar content being viewed by others

Change history

  • 19 December 2013

    In the version of this Review Article initially published, a double bond was missing from the chemical structure of the cyclooctene on the left side of the reaction arrow in Figure 1e. The chemical structure has been corrected in the HTML and PDF versions of the article.

References

  1. Prescher, J.A. & Bertozzi, C.R. Chemistry in living systems. Nat. Chem. Biol. 1, 13–21 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Sletten, E.M. & Bertozzi, C.R. From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 44, 666–676 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Nomura, D.K., Dix, M.M. & Cravatt, B.F. Activity-based protein profiling for biochemical pathway discovery in cancer. Nat. Rev. Cancer 10, 630–638 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Salic, A. & Mitchison, T.J. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc. Natl. Acad. Sci. USA 105, 2415–2420 (2008). This study describes the first alkyne chemical reporter for labeling nucleic acids in cells and animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jao, C.Y. & Salic, A. Exploring RNA transcription and turnover in vivo by using click chemistry. Proc. Natl. Acad. Sci. USA 105, 15779–15784 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Neef, A.B. & Luedtke, N.W. Dynamic metabolic labeling of DNA in vivo with arabinosyl nucleosides. Proc. Natl. Acad. Sci. USA 108, 20404–20409 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Guan, L., van der Heijden, G.W., Bortvin, A. & Greenberg, M.M. Intracellular detection of cytosine incorporation in genomic DNA by using 5-ethynyl-2′-deoxycytidine. ChemBioChem 12, 2184–2190 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Grammel, M., Hang, H. & Conrad, N.K. Chemical reporters for monitoring RNA synthesis and poly(A) tail dynamics. ChemBioChem 13, 1112–1115 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yamakoshi, H. et al. Imaging of EdU, an alkyne-tagged cell proliferation probe, by Raman microscopy. J. Am. Chem. Soc. 27, 6102–6105 (2011). This study describes the direct imaging of alkyne-tagged DNA by Raman spectroscopy.

    Article  CAS  Google Scholar 

  10. Song, C.X. et al. Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat. Biotechnol. 29, 68–72 (2011). This study describes a chemoenzymatic method for bioorthogonal detection and enrichment of 5-hmc modification of nucleic acids.

    Article  CAS  PubMed  Google Scholar 

  11. He, Y.F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ito, S. et al. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Science 333, 1300–1303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, C.C. & Schultz, P.G. Adding new chemistries to the genetic code. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  PubMed  Google Scholar 

  14. Greiss, S. & Chin, J.W. Expanding the genetic code of an animal. J. Am. Chem. Soc. 133, 14196–14199 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bianco, A., Townsley, F.M., Greiss, S., Lang, K. & Chin, J.W. Expanding the genetic code of Drosophila melanogaster. Nat. Chem. Biol. 8, 748–750 (2012).

    Article  CAS  PubMed  Google Scholar 

  16. Lang, K. et al. Genetic encoding of bicyclononynes and trans-cyclooctenes for site-specific protein labeling in vitro and in live mammalian cells via rapid fluorogenic Diels-Alder reactions. J. Am. Chem. Soc. 134, 10317–10320 (2012). This study describes the rapid and selective bioorthogonal reaction in cells using site-specific noncanonical amino acid incorporation and tetrazine reagents.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johnson, J.A., Lu, Y.Y., Van Deventer, J.A. & Tirrell, D.A. Residue-specific incorporation of non-canonical amino acids into proteins: recent developments and applications. Curr. Opin. Chem. Biol. 14, 774–780 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu, J., Xu, Y., Stoleru, D. & Salic, A. Imaging protein synthesis in cells and tissues with an alkyne analog of puromycin. Proc. Natl. Acad. Sci. USA 109, 413–418 (2012).

    Article  CAS  PubMed  Google Scholar 

  19. Deal, R.B., Henikoff, J.G. & Henikoff, S. Genome-wide kinetics of nucleosome turnover determined by metabolic labeling of histones. Science 328, 1161–1164 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Eichelbaum, K., Winter, M., Diaz, M.B., Herzig, S. & Krijgsveld, J. Selective enrichment of newly synthesized proteins for quantitative secretome analysis. Nat. Biotechnol. 30, 984–990 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. Howden, A.J. et al. QuaNCAT: quantitating proteome dynamics in primary cells. Nat. Methods 10, 343–346 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dieterich, D.C. et al. In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons. Nat. Neurosci. 13, 897–905 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tcherkezian, J., Brittis, P.A., Thomas, F., Roux, P.P. & Flanagan, J.G. Transmembrane receptor DCC associates with protein synthesis machinery and regulates translation. Cell 141, 632–644 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Ngo, J.T. et al. Cell-selective metabolic labeling of proteins. Nat. Chem. Biol. 5, 715–717 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Grammel, M., Zhang, M.M. & Hang, H.C. Orthogonal alkynyl amino acid reporter for selective labeling of bacterial proteomes during infection. Angew. Chem. Int. Ed. Engl. 49, 5970–5974 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Grammel, M., Dossa, P.D., Taylor-Salmon, E. & Hang, H.C. Cell-selective labeling of bacterial proteomes with an orthogonal phenylalanine amino acid reporter. Chem. Commun. (Camb.) 48, 1473–1474 (2012).

    Article  CAS  Google Scholar 

  27. Saxon, E. & Bertozzi, C.R. Cell surface engineering by a modified Staudinger reaction. Science 287, 2007–2010 (2000). This study describes the Staundinger ligation reaction between functionalized triarylphosphine reagents and cell-surface glycans that were metabolically labeled with azide-modified monosaccharide reporter. As triarylphosphine and alkyl azides are both abiotic, this study is the first example of a 'bioorthogonal' ligation reaction.

    CAS  PubMed  Google Scholar 

  28. Laughlin, S.T. & Bertozzi, C.R. Imaging the glycome. Proc. Natl. Acad. Sci. USA 106, 12–17 (2009).

    Article  CAS  PubMed  Google Scholar 

  29. Yarema, K.J., Goon, S. & Bertozzi, C.R. Metabolic selection of glycosylation defects in human cells. Nat. Biotechnol. 19, 553–558 (2001). This study highlights the application of chemical reporter labeling and selection for identification of genetic mutations involved in human disease.

    Article  CAS  PubMed  Google Scholar 

  30. Laughlin, S.T., Baskin, J.M., Amacher, S.L. & Bertozzi, C.R. In vivo imaging of membrane-associated glycans in developing zebrafish. Science 320, 664–667 (2008). This study describes dynamic bioorthogonal labeling and imaging in whole animals.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dumont, A., Malleron, A., Awwad, M., Dukan, S. & Vauzeilles, B. Click-mediated labeling of bacterial membranes through metabolic modification of the lipopolysaccharide inner core. Angew. Chem. Int. Ed. Engl. 51, 3143–3146 (2012).

    Article  CAS  PubMed  Google Scholar 

  32. Liu, F., Aubry, A.J., Schoenhofen, I.C., Logan, S.M. & Tanner, M.E. The engineering of bacteria bearing azido-pseudaminic acid–modified flagella. ChemBioChem 10, 1317–1320 (2009).

    Article  CAS  PubMed  Google Scholar 

  33. Swarts, B.M. et al. Probing the mycobacterial trehalome with bioorthogonal chemistry. J. Am. Chem. Soc. 134, 16123–16126 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anderson, C.T., Wallace, I.S. & Somerville, C.R. Metabolic click-labeling with a fucose analog reveals pectin delivery, architecture, and dynamics in Arabidopsis cell walls. Proc. Natl. Acad. Sci. USA 109, 1329–1334 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hart, G.W., Slawson, C., Ramirez-Correa, G. & Lagerlof, O. Cross talk between O-GlcNAcylation and phosphorylation: roles in signaling, transcription, and chronic disease. Annu. Rev. Biochem. 80, 825–858 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vocadlo, D.J., Hang, H.C., Kim, E.J., Hanover, J.A. & Bertozzi, C.R. A chemical approach for identifying O-GlcNAc–modified proteins in cells. Proc. Natl. Acad. Sci. USA 100, 9116–9121 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zaro, B.W., Yang, Y.Y., Hang, H.C. & Pratt, M.R. Chemical reporters for fluorescent detection and identification of O-GlcNAc–modified proteins reveal glycosylation of the ubiquitin ligase NEDD4–1. Proc. Natl. Acad. Sci. USA 108, 8146–8151 (2011). This study describes a large-scale proteomic analysis of O-GlcNAcylation using chemical reporter labeling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Rexach, J.E., Clark, P.M. & Hsieh-Wilson, L.C. Chemical approaches to understanding O-GlcNAc glycosylation in the brain. Nat. Chem. Biol. 4, 97–106 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Rexach, J.E. et al. Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags. Nat. Chem. Biol. 6, 645–651 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Rexach, J.E. et al. Dynamic O-GlcNAc modification regulates CREB-mediated gene expression and memory formation. Nat. Chem. Biol. 8, 253–261 (2012). This study describes a large-scale chemoenzymatic proteomic analysis of dynamic O-GlcNAcylation in the brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pratt, M.R. et al. Deconvoluting the functions of polypeptide N-α-acetylgalactosaminyltransferase family members by glycopeptide substrate profiling. Chem. Biol. 11, 1009–1016 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Zheng, T. et al. Tracking N-acetyllactosamine on cell-surface glycans in vivo. Angew. Chem. Int. Ed. Engl. 50, 4113–4118 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Resh, M.D. Trafficking and signaling by fatty-acylated and prenylated proteins. Nat. Chem. Biol. 2, 584–590 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. Hang, H.C., Wilson, J.P. & Charron, G. Bioorthogonal chemical reporters for analyzing protein lipidation and lipid trafficking. Acc. Chem. Res. 44, 699–708 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Kho, Y. et al. A tagging-via-substrate technology for detection and proteomics of farnesylated proteins. Proc. Natl. Acad. Sci. USA 101, 12479–12484 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Charron, G., Tsou, L.K., Maguire, W., Yount, J.S. & Hang, H.C. Alkynyl-farnesol reporters for detection of protein S-prenylation in cells. Mol. Biosyst. 7, 67–73 (2011).

    Article  CAS  PubMed  Google Scholar 

  47. DeGraw, A.J. et al. Evaluation of alkyne-modified isoprenoids as chemical reporters of protein prenylation. Chem. Biol. Drug Des. 76, 460–471 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Charron, G., Li, M., MacDonald, M. & Hang, H.C. Prenylome profiling reveals S-farnesylation is crucial for membrane targeting and antiviral activity of ZAP long-isoform. Proc. Natl. Acad. Sci. USA http://dx.doi.org/10.1073/pnas.1302564110 (2013). This study describes the proteomic analysis of S-prenylated proteins in mammalian cells using chemical reporter labeling and the discovery of zinc-finger antiviral protein L (ZAPL) farnesylation–dependent antiviral activity.

  49. Burnaevskiy, N. et al. Proteolytic elimination of N-myristoyl modifications by the Shigella virulence factor IpaJ. Nature 496, 106–109 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fukata, Y. & Fukata, M. Protein palmitoylation in neuronal development and synaptic plasticity. Nat. Rev. Neurosci. 11, 161–175 (2010).

    Article  CAS  PubMed  Google Scholar 

  51. Martin, B.R. & Cravatt, B.F. Large-scale profiling of protein palmitoylation in mammalian cells. Nat. Methods 6, 135–138 (2009). This study describes a large-scale proteomic analysis of S-palmitoylated proteins in T cells using chemical reporter labeling.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson, J.P., Raghavan, A.S., Yang, Y.Y., Charron, G. & Hang, H.C. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol. Cell. Proteomics 10, M110.001198 (2011).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Yount, J.S. et al. Palmitoylome profiling reveals S-palmitoylation–dependent antiviral activity of IFITM3. Nat. Chem. Biol. 6, 610–614 (2010). This study describes the proteomic analysis of S-palmitoylated proteins in a dendritic cell line using chemical reporter labeling and the discovery that S-palmitoylation of IFITM3 is crucial for host resistance to influenza virus infection.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Li, Y., Martin, B.R., Cravatt, B.F. & Hofmann, S.L. DHHC5 protein palmitoylates flotillin-2 and is rapidly degraded on induction of neuronal differentiation in cultured cells. J. Biol. Chem. 287, 523–530 (2012).

    Article  CAS  PubMed  Google Scholar 

  55. Zhang, M.M., Tsou, L.K., Charron, G., Raghavan, A.S. & Hang, H.C. Tandem fluorescence imaging of dynamic S-acylation and protein turnover. Proc. Natl. Acad. Sci. USA 107, 8627–8632 (2010). This study describes dual chemical reporter labeling for the tandem detection of protein turnover and S-palmitoylation dynamics in mammalian cells, which revealed accelerated S-palmitoylation in activated T cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Martin, B.R., Wang, C., Adibekian, A., Tully, S.E. & Cravatt, B.F. Global profiling of dynamic protein palmitoylation. Nat. Methods 9, 84–89 (2012). This study describes large-scale profiling of dynamic S-palmitoylation in T cells using chemical reporter labeling with SILAC.

    Article  CAS  Google Scholar 

  57. Zhang, C.H., Wu, P.-Y.J., Kelly, F.D., Nurse, P. & Hang, H.C. Quantitative control protein S-palmitoylation regulates meiotic entry in fission yeast. PLoS Biol. 11, e1001501 (2013). This study describes the application of palmitoylation reporter in fission yeast and the discovery that protein S-palmitoylation in cellular differentiation can be quantitatively regulated by a single palmitoyltransferase.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ching, W., Hang, H.C. & Nusse, R. Lipid-independent secretion of a Drosophila Wnt protein. J. Biol. Chem. 283, 17092–17098 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Heal, W.P. et al. Bioorthogonal chemical tagging of protein cholesterylation in living cells. Chem. Commun. (Camb.) 47, 4081–4083 (2011).

    Article  CAS  Google Scholar 

  60. Jiang, H. et al. SIRT6 regulates TNF-α secretion through hydrolysis of long-chain fatty acyl lysine. Nature 496, 110–113 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jao, C.Y., Roth, M., Welti, R. & Salic, A. Metabolic labeling and direct imaging of choline phospholipids in vivo. Proc. Natl. Acad. Sci. USA 106, 15332–15337 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Yang, J., Seckute, J., Cole, C.M. & Devaraj, N.K. Live-cell imaging of cyclopropene tags with fluorogenic tetrazine cycloadditions. Angew. Chem. Int. Ed. Engl. 51, 7476–7479 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Milne, S.B. et al. Capture and release of alkyne-derivatized glycerophospholipids using cobalt chemistry. Nat. Chem. Biol. 6, 205–207 (2010). This study describes the analysis of lipid metabolism in mammalian cells using chemical reporter labeling and cobalt-alkyne chemistry for the capture and release of labeled lipids.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thiele, C. et al. Tracing fatty acid metabolism by click chemistry. ACS Chem. Biol. 7, 2004–2011 (2012).

    Article  CAS  PubMed  Google Scholar 

  65. Rangan, K.J., Yang, Y.Y., Charron, G. & Hang, H.C. Rapid visualization and large-scale profiling of bacterial lipoproteins with chemical reporters. J. Am. Chem. Soc. 132, 10628–10629 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Babu, M.M. et al. A database of bacterial lipoproteins (DOLOP) with functional assignments to predicted lipoproteins. J. Bacteriol. 188, 2761–2773 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Lin, H., Su, X. & He, B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chem. Biol. 7, 947–960 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yang, Y.Y., Ascano, J.M. & Hang, H.C. Bioorthogonal chemical reporters for monitoring protein acetylation. J. Am. Chem. Soc. 132, 3640–3641 (2010). This study describes chemical reporters for protein acetylation that function in vitro and in mammalian cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yang, Y.Y., Grammel, M. & Hang, H.C. Identification of lysine acetyltransferase p300 substrates using 4-pentynoyl-coenzyme A and bioorthogonal proteomics. Bioorg. Med. Chem. Lett. 21, 4976–4979 (2011); erratum 21, 6613 (2011).

    Article  CAS  PubMed  Google Scholar 

  70. Arnesen, T. et al. Proteomics analyses reveal the evolutionary conservation and divergence of N-terminal acetyltransferases from yeast and humans. Proc. Natl. Acad. Sci. USA 106, 8157–8162 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Mukherjee, S., Hao, Y.H. & Orth, K. A newly discovered post-translational modification—the acetylation of serine and threonine residues. Trends Biochem. Sci. 32, 210–216 (2007).

    Article  CAS  PubMed  Google Scholar 

  72. Bao, X., Zhao, Q., Yang, T., Fung, Y.M. & Li, X.D. A chemical probe for lysine malonylation. Angew. Chem. Int. Ed. Engl. 52, 4883–4886 (2013).

    Article  CAS  PubMed  Google Scholar 

  73. Greer, E.L. & Shi, Y. Histone methylation: a dynamic mark in health, disease and inheritance. Nat. Rev. Genet. 13, 343–357 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dalhoff, C., Lukinavicius, G., Klimasauskas, S. & Weinhold, E. Direct transfer of extended groups from synthetic cofactors by DNA methyltransferases. Nat. Chem. Biol. 2, 31–32 (2006). This study describes the SAM chemical reporter that can be efficiently used by a DNA methyltransferase.

    Article  CAS  PubMed  Google Scholar 

  75. Peters, W. et al. Enzymatic site-specific functionalization of protein methyltransferase substrates with alkynes for click labeling. Angew. Chem. Int. Ed. Engl. 49, 5170–5173 (2010).

    Article  CAS  PubMed  Google Scholar 

  76. Islam, K., Zheng, W., Yu, H., Deng, H. & Luo, M. Expanding cofactor repertoire of protein lysine methyltransferase for substrate labeling. ACS Chem. Biol. 6, 679–684 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Wang, R., Zheng, W., Yu, H., Deng, H. & Luo, M. Labeling substrates of protein arginine methyltransferase with engineered enzymes and matched S-adenosyl-L-methionine analogues. J. Am. Chem. Soc. 133, 7648–7651 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Wang, R. et al. Profiling genome-wide chromatin methylation with engineered posttranslation apparatus within living cells. J. Am. Chem. Soc. 135, 1048–1056 (2013). This study describes the application of a protein methylation reporter in living cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Willnow, S., Martin, M., Luscher, B. & Weinhold, E. A selenium-based click AdoMet analogue for versatile substrate labeling with wild-type protein methyltransferases. ChemBioChem 13, 1167–1173 (2012).

    Article  CAS  PubMed  Google Scholar 

  80. Bothwell, I.R. et al. Se-adenosyl-L-selenomethionine cofactor analogue as a reporter of protein methylation. J. Am. Chem. Soc. 134, 14905–14912 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Gibson, B.A. & Kraus, W.L. New insights into the molecular and cellular functions of poly(ADP-ribose) and PARPs. Nat. Rev. Mol. Cell Biol. 13, 411–424 (2012).

    Article  CAS  PubMed  Google Scholar 

  82. Jiang, H., Kim, J.H., Frizzell, K.M., Kraus, W.L. & Lin, H. Clickable NAD analogues for labeling substrate proteins of poly(ADP-ribose) polymerases. J. Am. Chem. Soc. 132, 9363–9372 (2010). This study describes in vitro chemical reporters for protein ADP-ribosylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Shogren-Knaak, M.A., Alaimo, P.J. & Shokat, K.M. Recent advances in chemical approaches to the study of biological systems. Annu. Rev. Cell Dev. Biol. 17, 405–433 (2001).

    Article  CAS  PubMed  Google Scholar 

  84. Yarbrough, M.L. et al. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323, 269–272 (2009).

    Article  CAS  PubMed  Google Scholar 

  85. Woolery, A.R., Luong, P., Broberg, C.A. & Orth, K. AMPylation: something old is new again. Front Microbiol. 1, 113 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Müller, M.P. et al. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329, 946–949 (2010).

    Article  PubMed  Google Scholar 

  87. Tan, Y. & Luo, Z.Q. Legionella pneumophila SidD is a deAMPylase that modifies Rab1. Nature 475, 506–509 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Grammel, M., Luong, P., Orth, K. & Hang, H.C. A chemical reporter for protein AMPylation. J. Am. Chem. Soc. 133, 17103–17105 (2011). This study describes a chemical reporter for protein AMPylation.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Macek, B., Mann, M. & Olsen, J.V. Global and site-specific quantitative phosphoproteomics: principles and applications. Annu. Rev. Pharmacol. Toxicol. 49, 199–221 (2009).

    Article  CAS  PubMed  Google Scholar 

  90. Allen, J.J. et al. A semisynthetic epitope for kinase substrates. Nat. Methods 4, 511–516 (2007). This study describes the union of a 'bumped' ATP analog and mutant kinase pair with two-step alkylation and antibody detection of specific kinase substrates.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Blethrow, J.D., Glavy, J.S., Morgan, D.O. & Shokat, K.M. Covalent capture of kinase-specific phosphopeptides reveals Cdk1-cyclin B substrates. Proc. Natl. Acad. Sci. USA 105, 1442–1447 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Paulsen, C.E. et al. Peroxide-dependent sulfenylation of the EGFR catalytic site enhances kinase activity. Nat. Chem. Biol. 8, 57–64 (2012). This study describes the proteomic analysis of sulfenylation with an alkyne chemical probe and discovery of oxidation-enhanced kinase activity.

    Article  CAS  Google Scholar 

  93. Blackman, M.L., Royzen, M. & Fox, J.M. Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 130, 13518–13519 (2008). The tetrazine ligation has afforded a rapid and selective bioorthogonal ligation reaction for live-cell imaging studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Devaraj, N.K. & Weissleder, R. Biomedical applications of tetrazine cycloadditions. Acc. Chem. Res. 44, 816–827 (2011). The tetrazine ligation has afforded a rapid and selective bioorthogonal ligation reaction for live-cell imaging studies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Pezacki, J.P. et al. Chemical contrast for imaging living systems: molecular vibrations drive CARS microscopy. Nat. Chem. Biol. 7, 137–145 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Chang, P.V., Dube, D.H., Sletten, E.M. & Bertozzi, C.R. A strategy for the selective imaging of glycans using caged metabolic precursors. J. Am. Chem. Soc. 132, 9516–9518 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Xie, R., Hong, S., Feng, L., Rong, J. & Chen, X. Cell-selective metabolic glycan labeling based on ligand-targeted liposomes. J. Am. Chem. Soc. 134, 9914–9917 (2012).

    Article  CAS  PubMed  Google Scholar 

  98. Meldal, M. & Tornøe, C.W. Cu-catalyzed azide-alkyne cycloaddition. Chem. Rev. 108, 2952–3015 (2008). Studies by the Meldal and Sharpless laboratories demonstrated that azide-alkyne cycloadditions could be accelerated with Cu( I ) catalysts for bioorthogonal labeling applications.

    Article  CAS  PubMed  Google Scholar 

  99. Kolb, H.C., Finn, M.G. & Sharpless, K.B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. Engl. 40, 2004–2021 (2001). Studies by the Meldal and Sharpless laboratories demonstrated azide-alkyne cycloadditions could be accelerated with Cu( I ) catalysts for bioorthogonal labeling applications.

    Article  CAS  PubMed  Google Scholar 

  100. Huisgen, R. 1,3-Dipolar cycloadditions. past and future. Angew. Chem. Int. Ed. Engl. 2, 565–598 (1963). Early studies of cycloaddition reactions by Huisgen and coworkers provided the foundation for future bioorthogonal reactions.

    Article  Google Scholar 

Download references

Acknowledgements

We thank K. Rangan and N. Westcott for helpful comments on the manuscript. H.C.H. acknowledges support from Ellison Medical Foundation and US National Institutes of Health–National Institute of General Medical Sciences (1R01GM087544).

Author information

Authors and Affiliations

Authors

Contributions

M.G. and H.C.H. wrote this review.

Corresponding author

Correspondence to Howard C Hang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grammel, M., Hang, H. Chemical reporters for biological discovery. Nat Chem Biol 9, 475–484 (2013). https://doi.org/10.1038/nchembio.1296

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1296

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing