Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis

Abstract

We report a salvage pathway in Gram-negative bacteria that bypasses de novo biosynthesis of UDP N-acetylmuramic acid (UDP-MurNAc), the first committed peptidoglycan precursor, and thus provides a rationale for intrinsic fosfomycin resistance. The anomeric sugar kinase AmgK and the MurNAc α-1-phosphate uridylyl transferase MurU, defining this new cell wall sugar-recycling route in Pseudomonas putida, were characterized and engineered into Escherichia coli, channeling external MurNAc directly to peptidoglycan biosynthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: A peptidoglycan recycling pathway in P.putida bypasses UDP-MurNAc de novo synthesis, affecting fosfomycin susceptibility.
Figure 2: AmgK is an anomeric MurNAc/GlcNAc kinase and MurU a MurNAc α-1P uridylyltransferase.
Figure 3: Engineering of an E. coli strain with acquired fosfomycin resistance.

References

  1. Litzinger, S. & Mayer, C. The Murein Sacculus. in Prokaryotic Cell Wall Compounds—Structure and Biochemistry (eds. König, H., Claus, H. & Varma, A.) Ch 1, 3–53 (Springer, Berlin, Heidelberg, 2010).

  2. Lovering, A.L., Safadi, S.S. & Strynadka, N.C. Annu. Rev. Biochem. 81, 451–478 (2012).

    Article  CAS  Google Scholar 

  3. Kahan, F.M., Kahan, J.S., Cassidy, P.J. & Kropp, H. Ann. NY Acad. Sci. 235, 364–386 (1974).

    Article  CAS  Google Scholar 

  4. Mengin-Lecreulx, D. & van Heijenoort, J. FEMS Microbiol. Lett. 54, 129–133 (1990).

    Article  CAS  Google Scholar 

  5. Goodell, E.W. J. Bacteriol. 163, 305–310 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Park, J.T. & Uehara, T. Microbiol. Mol. Biol. Rev. 72, 211–227 (2008).

    Article  CAS  Google Scholar 

  7. Johnson, J.W., Fisher, J.F. & Mobashery, S. Ann. NY Acad. Sci. 1277, 54–75 (2013).

    Article  CAS  Google Scholar 

  8. Mengin-Lecreulx, D., van Heijenoort, J. & Park, J.T. J. Bacteriol. 178, 5347–5352 (1996).

    Article  CAS  Google Scholar 

  9. Jaeger, T., Arsic, M. & Mayer, C. J. Biol. Chem. 280, 30100–30106 (2005).

    Article  CAS  Google Scholar 

  10. Uehara, T. & Park, J.T. J. Bacteriol. 186, 7273–7279 (2004).

    Article  CAS  Google Scholar 

  11. Uehara, T. et al. J. Bacteriol. 187, 3643–3649 (2005).

    Article  CAS  Google Scholar 

  12. White, R.J. Biochem. J. 106, 847–858 (1968).

    Article  CAS  Google Scholar 

  13. Parquet, C., Flouret, B., Leduc, M., Hirota, Y. & van Heijenoort, J. Eur. J. Biochem. 133, 371–377 (1983).

    Article  CAS  Google Scholar 

  14. White, R.J. Biochem. J. 118, 89–92 (1970).

    Article  CAS  Google Scholar 

  15. Dahl, U., Jaeger, T., Nguyen, B.T., Sattler, J.M. & Mayer, C. J. Bacteriol. 186, 2385–2392 (2004).

    Article  CAS  Google Scholar 

  16. Jaeger, T. & Mayer, C. Cell. Mol. Life Sci. 65, 928–939 (2008).

    Article  CAS  Google Scholar 

  17. Bacik, J.P. et al. J. Biol. Chem. 286, 12283–12291 (2011).

    Article  CAS  Google Scholar 

  18. Shiba, Y., Matsumoto, K. & Hara, H. Genes Genet. Syst. 81, 51–56 (2006).

    Article  CAS  Google Scholar 

  19. Vertommen, D., Ruiz, N., Leverrier, P., Silhavy, T.J. & Collet, J.F. Proteomics 9, 2432–2443 (2009).

    Article  CAS  Google Scholar 

  20. Braun, M. & Silhavy, T.J. Mol. Microbiol. 45, 1289–1302 (2002).

    Article  CAS  Google Scholar 

  21. Okuda, S., Freinkman, E. & Kahne, D. Science 338, 1214–1217 (2012).

    Article  CAS  Google Scholar 

  22. Pompeo, F., Bourne, Y., van Heijenoort, J., Fassy, F. & Mengin-Lecreulx, D. J. Biol. Chem. 276, 3833–3839 (2001).

    Article  CAS  Google Scholar 

  23. Michalopoulos, A.S., Livaditis, I.G. & Gougoutas, V. Int. J. Infect. Dis. 15, e732–e739 (2011).

    Article  CAS  Google Scholar 

  24. Falagas, M.E., Giannopoulou, K.P., Kokolakis, G.N. & Rafailidis, P.I. Clin. Infect. Dis. 46, 1069–1077 (2008).

    Article  Google Scholar 

  25. Mirakhur, A., Gallagher, M.J., Ledson, M.J., Hart, C.A. & Walshaw, M.J. J. Cyst. Fibros. 2, 19–24 (2003).

    Article  CAS  Google Scholar 

  26. Widdel, F., Kohring, G.-W. & Mayer, F. Arch. Microbiol. 134, 286–294 (1983).

    Article  CAS  Google Scholar 

  27. Vötsch, W. & Templin, M.F. J. Biol. Chem. 275, 39032–39038 (2000).

    Article  Google Scholar 

  28. Klebensberger, J., Birkenmaier, A., Geffers, R., Kjelleberg, S. & Philipp, B. Environ. Microbiol. 11, 3073–3086 (2009).

    Article  CAS  Google Scholar 

  29. Choi, K.H., Kumar, A. & Schweizer, H.P. J. Microbiol. Methods 64, 391–397 (2006).

    Article  CAS  Google Scholar 

  30. Liu, X., Wood, P.L., Parales, J.V. & Parales, R.E. J. Bacteriol. 191, 2909–2916 (2009).

    Article  CAS  Google Scholar 

  31. Geszvain, K. & Tebo, B.M. Appl. Environ. Microbiol. 76, 1224–1231 (2010).

    Article  CAS  Google Scholar 

  32. Reith, J., Berking, A. & Mayer, C. J. Bacteriol. 193, 5386–5392 (2011).

    Article  CAS  Google Scholar 

  33. Tatusov, R.L., Galperin, M.Y., Natale, D.A. & Koonin, E.V. Nucleic Acids Res. 28, 33–36 (2000).

    Article  CAS  Google Scholar 

  34. Markowitz, V.M. et al. Nucleic Acids Res. 40, D115–D122 (2012).

    Article  CAS  Google Scholar 

  35. Altschul, S.F., Gish, W., Miller, W., Myers, E.W. & Lipman, D.J. J. Mol. Biol. 215, 403–410 (1990).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank B. Phillip (University of Münster), H.P. Schweizer (Colorado State University), S.P. Levy (Tufts University), A. Roth and C. Hauck (both from University of Konstanz), T. Jaeger and U. Jenal (both from Biozentrum, University of Basel) and F. Götz (University of Tübingen) for providing plasmids and bacterial strains and A. Friemel for implementing NMR studies. J.G. gratefully acknowledges a Dr. Marietta Lutze stipend from the Graduate School of Chemical Biology–University of Konstanz that was generously supported by the company Dr. Kade GmbH, Konstanz and Berlin. This work was further supported by the German Research Foundation (DFG, MA2436/4 and SFB766/A15) and the Baden-Württemberg Stiftung (P-BWS-Glyko11).

Author information

Authors and Affiliations

Authors

Contributions

J.G. conducted most experiments and analyzed data. A.S. conducted the LC/MS experiments. B.N. isolated reaction products and analyzed the NMR data. M.B. conducted complementation studies. C.M. and J.G. conceived the experiments and wrote the paper.

Corresponding author

Correspondence to Christoph Mayer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Figures and Tables

Supplementary Results, Supplementary Figures 1–10, and Supplementary Tables 1–4 (PDF 6687 kb)

Supplementary Data Set 1

Distributions of cell wall recycling enzymes for all bacterial phyla (XLS 3099 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gisin, J., Schneider, A., Nägele, B. et al. A cell wall recycling shortcut that bypasses peptidoglycan de novo biosynthesis. Nat Chem Biol 9, 491–493 (2013). https://doi.org/10.1038/nchembio.1289

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1289

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing