Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo

A Corrigendum to this article was published on 17 January 2014

This article has been updated

Abstract

Whole-cell catalysts for non-natural chemical reactions will open new routes to sustainable production of chemicals. We designed a cytochrome 'P411' with unique serine-heme ligation that catalyzes efficient and selective olefin cyclopropanation in intact Escherichia coli cells. The mutation C400S in cytochrome P450BM3 gives a signature ferrous CO Soret peak at 411 nm, abolishes monooxygenation activity, raises the resting-state FeIII-to-FeII reduction potential and substantially improves NAD(P)H-driven activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Contrasting P450- and P411-mediated cyclopropanation.

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

Change history

  • 19 December 2013

    In the version of this article initially published, the Protein Data Bank codes for the P450 and P411 constructs were inadvertently switched. Accession code 4H23 actually corresponds to the P411 structure, and 4H24 corresponds to the P450 structure. The error has been corrected in the HTML and PDF versions of the article.

References

  1. Ajikumar, P.K. et al. Science 330, 70–74 (2010).

    Article  CAS  Google Scholar 

  2. Westfall, P.J. et al. Proc. Natl. Acad. Sci. USA 109, E111–E118 (2012).

    Article  CAS  Google Scholar 

  3. Kataoka, M. et al. Appl. Microbiol. Biotechnol. 62, 437–445 (2003).

    Article  CAS  Google Scholar 

  4. Boyce, M. & Bertozzi, C.R. Nat. Methods 8, 638–642 (2011).

    Article  CAS  Google Scholar 

  5. Coelho, P.S., Brustad, E.M., Kannan, A. & Arnold, F.H. Science 339, 307–310 (2013).

    Article  CAS  Google Scholar 

  6. Lebel, H., Marcoux, J.-F., Molinaro, C. & Charette, A.B. Chem. Rev. 103, 977–1050 (2003).

    Article  CAS  Google Scholar 

  7. Evans, D.A., Woerpel, K.A., Hinman, M.M. & Faul, M.M. J. Am. Chem. Soc. 113, 726–728 (1991).

    Article  CAS  Google Scholar 

  8. Davies, H.M.L. & Venkataramani, C. Org. Lett. 5, 1403–1406 (2003).

    Article  CAS  Google Scholar 

  9. Maas, G. Chem. Soc. Rev. 33, 183–190 (2004).

    Article  CAS  Google Scholar 

  10. Ost, T.W.B. et al. Biochemistry 40, 13421–13429 (2001).

    Article  CAS  Google Scholar 

  11. Wuttke, D.S. & Gray, H.B. Curr. Opin. Struct. Biol. 3, 555–563 (1993).

    Article  CAS  Google Scholar 

  12. Reedy, C.J., Elvekrog, M.M. & Gibney, B.R. Nucleic Acids Res. 36, D307–D313 (2008).

    Article  CAS  Google Scholar 

  13. Dawson, J.H. Science 240, 433–439 (1988).

    Article  CAS  Google Scholar 

  14. Vatsis, K.P., Peng, H.-M. & Coon, M.J. J. Inorg. Biochem. 91, 542–553 (2002).

    Article  CAS  Google Scholar 

  15. Wolf, J.R., Hamaker, C.G., Djukic, J.-P., Kodadek, T. & Woo, L.K. J. Am. Chem. Soc. 117, 9194–9199 (1995).

    Article  CAS  Google Scholar 

  16. Perera, R., Sono, M., Voegtle, H.L. & Dawson, J.H. Arch. Biochem. Biophys. 507, 119–125 (2011).

    Article  CAS  Google Scholar 

  17. Dunford, A.J., Girvan, H.M., Scrutton, N.S. & Munro, A.W. Biochim. Biophys. Acta 1794, 1181–1189 (2009).

    Article  CAS  Google Scholar 

  18. Wessjohann, L.A., Brandt, W. & Thiemann, T. Chem. Rev. 103, 1625–1648 (2003).

    Article  CAS  Google Scholar 

  19. Penoni, A. et al. Eur. J. Inorg. Chem. 1452–1460 (2003).

  20. Watanabe, N., Matsuda, H., Kuribayashi, H. & Hashimoto, S.-i. Heterocycles 42, 537–542 (1996).

    Article  CAS  Google Scholar 

  21. Sambrook, J., Frisch, E. & Maniatis, T. Molecular Cloning: a Laboratory Manual, Vol. 2 (Cold Spring Harbor Laboratory Press, New York, 1989).

  22. Omura, T. & Sato, R. J. Biol. Chem. 239, 2370–2378 (1964).

    CAS  PubMed  Google Scholar 

  23. Kabsch, W. Acta Crystallogr. D Biol. Crystallogr. 66, 133–144 (2010).

    Article  CAS  Google Scholar 

  24. Evans, P. Acta Crystallogr. D Biol. Crystallogr. 62, 72–82 (2006).

    Article  Google Scholar 

  25. Haines, D.C., Tomchick, D.R., Machius, M. & Peterson, J.A. Biochemistry 40, 13456–13465 (2001).

    Article  CAS  Google Scholar 

  26. Vagin, A. & Teplyakov, A. Acta Crystallogr. D Biol Crystallogr. 30, 1022–1025 (1997).

    CAS  Google Scholar 

  27. Bailey, S. Acta Crystallogr. D Biol Crystallogr. 50, 760–763 (1994).

    Article  Google Scholar 

  28. Emsley, P. & Cowtan, K. Acta Crystallogr. D Biol Crystallogr. 60, 2126–2132 (2004).

    Article  Google Scholar 

  29. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    Article  CAS  Google Scholar 

  30. Adams, P.D. et al. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research is supported by the Gordon and Betty Moore Foundation through the Caltech Programmable Molecular Technology Initiative. E.M.B. was supported by US National Institutes of Health (NIH) postdoctoral award F32GM087102 and a generous startup fund from University of North Carolina–Chapel Hill (UNC). Z.J.W. was supported by NIH 1F32EB015846-01. M.E.E. was supported by NIH grant RO1-DK019038. We thank N. Peck for help with preparative-scale experiments. We thank the Redinbo laboratory at UNC for assistance with X-ray data collection. M.E.E. thanks J.D. Blakemore and J.R. Winkler for electrodes and helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

P.S.C., F.H.A. and E.M.B. conceived the project and wrote the paper; P.S.C., E.M.B. and Z.J.W. designed the experiments; E.M.B. and S.A.B. performed the crystallography; M.E.E. performed the redox titrations; P.S.C., Z.J.W. and A.K. performed the catalysis experiments; all authors discussed the results.

Corresponding authors

Correspondence to Frances H Arnold or Eric M Brustad.

Ethics declarations

Competing interests

P.S.C., E.M.B., Z.J.W. and F.H.A. have filed through Caltech a provisional patent application that is based on results presented here.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–17, Supplementary Tables 1–12 (PDF 3560 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coelho, P., Wang, Z., Ener, M. et al. A serine-substituted P450 catalyzes highly efficient carbene transfer to olefins in vivo. Nat Chem Biol 9, 485–487 (2013). https://doi.org/10.1038/nchembio.1278

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1278

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing