Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Allosteric inhibition through suppression of transient conformational states

Abstract

The ability to inhibit binding or enzymatic activity is key to preventing aberrant behaviors of proteins. Allosteric inhibition is desirable as it offers several advantages over competitive inhibition, but the mechanisms of action remain poorly understood in most cases. Here we show that allosteric inhibition can be effected by destabilizing a low-populated conformational state that serves as an on-pathway intermediate for ligand binding, without altering the protein's ground-state structure. As standard structural approaches are typically concerned with changes in the ground-state structure of proteins, the presence of such a mechanism can go easily undetected. Our data strongly argue for the routine use of NMR tools suited to detect and characterize transiently formed conformational states in allosteric systems. Structure information on such important intermediates can ultimately result in more efficient design of allosteric inhibitors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CAP* transiently populates the active DBD state.
Figure 2: Energy landscape of CAP* and its manipulation by the inhibitor.
Figure 3: Structural characterization of CAP* and CAP*–cGMP2.
Figure 4: Allosteric inhibition by suppressing an on-pathway transiently populated intermediate.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

References

  1. Wells, J.A. & McClendon, C.L. Reaching for high-hanging fruit in drug discovery at protein-protein interfaces. Nature 450, 1001–1009 (2007).

    Article  CAS  Google Scholar 

  2. Lee, G.M. & Craik, C.S. Trapping moving targets with small molecules. Science 324, 213–215 (2009).

    Article  CAS  Google Scholar 

  3. Hardy, J.A. & Wells, J.A. Searching for new allosteric sites in enzymes. Curr. Opin. Struct. Biol. 14, 706–715 (2004).

    Article  CAS  Google Scholar 

  4. Groebe, D.R. In search of negative allosteric modulators of biological targets. Drug Discov. Today 14, 41–49 (2009).

    Article  CAS  Google Scholar 

  5. Maksay, G. Allostery in pharmacology: thermodynamics, evolution and design. Prog. Biophys. Mol. Biol. 106, 463–473 (2011).

    Article  CAS  Google Scholar 

  6. Arkin, M.R. & Wells, J.A. Small-molecule inhibitors of protein-protein interactions: progressing towards the dream. Nat. Rev. Drug Discov. 3, 301–317 (2004).

    Article  CAS  Google Scholar 

  7. Tzeng, S.-R. & Kalodimos, C.G. Protein dynamics and allostery: an NMR view. Curr. Opin. Struct. Biol. 21, 62–67 (2011).

    Article  CAS  Google Scholar 

  8. Passner, J.M., Schultz, S. & Steitz, T. Modeling the cAMP-induced allosteric transition using the crystal structure of CAP–cAMP at 2.1 Å resolution. J. Mol. Biol. 304, 847–859 (2000).

    Article  CAS  Google Scholar 

  9. Popovych, N., Tzeng, S.-R., Tonelli, M., Ebright, R.H. & Kalodimos, C.G. Structural basis for cAMP-mediated allosteric control of the catabolite activator protein. Proc. Natl. Acad. Sci. USA 106, 6927–6932 (2009).

    Article  CAS  Google Scholar 

  10. Gekko, K., Obu, N., Li, J. & Lee, J. A linear correlation between the energetics of allosteric communication and protein flexibility in the Escherichia coli cyclic AMP receptor protein revealed by mutation-induced changes in compressibility and amide hydrogen-deuterium exchange. Biochemistry 43, 3844–3852 (2004).

    Article  CAS  Google Scholar 

  11. Youn, H., Koh, J. & Roberts, G. Two-state allosteric modeling suggests protein equilibrium as an integral component for cyclic AMP (cAMP) specificity in the cAMP receptor protein of Escherichia coli. J. Bacteriol. 190, 4532–4540 (2008).

    Article  CAS  Google Scholar 

  12. Tzeng, S.-R. & Kalodimos, C.G. Dynamic activation of an allosteric regulatory protein. Nature 462, 368–372 (2009).

    Article  CAS  Google Scholar 

  13. Tzeng, S.-R. & Kalodimos, C.G. Protein activity regulation by conformational entropy. Nature 488, 236–240 (2012).

    Article  CAS  Google Scholar 

  14. Palmer, A.G., Kroenke, C.D. & Loria, J.P. Nuclear magnetic resonance methods for quantifying microsecond-to-millisecond motions in biological macromolecules. Methods Enzymol. 339, 204–238 (2001).

    Article  CAS  Google Scholar 

  15. Baldwin, A.J. & Kay, L.E. NMR spectroscopy brings invisible protein states into focus. Nat. Chem. Biol. 5, 808–814 (2009).

    Article  CAS  Google Scholar 

  16. Youn, H., Kerby, R., Conrad, M. & Roberts, G. Study of highly constitutively active mutants suggests how cAMP activates cAMP receptor protein. J. Biol. Chem. 281, 1119–1127 (2006).

    Article  CAS  Google Scholar 

  17. Loria, J.P., Rance, M. & Palmer, A.G.A. TROSY CPMG sequence for characterizing chemical exchange in large proteins. J. Biomol. NMR 15, 151–155 (1999).

    Article  CAS  Google Scholar 

  18. Korzhnev, D.M., Kloiber, K., Kanelis, V., Tugarinov, V. & Kay, L.E. Probing slow dynamics in high molecular weight proteins by methyl-TROSY NMR spectroscopy: application to a 723-residue enzyme. J. Am. Chem. Soc. 126, 3964–3973 (2004).

    Article  CAS  Google Scholar 

  19. Bouvignies, G. et al. Solution structure of a minor and transiently formed state of a T4 lysozyme mutant. Nature 477, 111–114 (2011).

    Article  CAS  Google Scholar 

  20. Boehr, D.D., McElheny, D., Dyson, H. & Wright, P. The dynamic energy landscape of dihydrofolate reductase catalysis. Science 313, 1638–1642 (2006).

    Article  CAS  Google Scholar 

  21. Carroll, M.J. et al. Evidence for dynamics in proteins as a mechanism for ligand dissociation. Nat. Chem. Biol. 8, 246–252 (2012).

    Article  CAS  Google Scholar 

  22. Masterson, L.R. et al. cAMP-dependent protein kinase A selects the excited state of the membrane substrate phospholamban. J. Mol. Biol. 412, 155–164 (2011).

    Article  CAS  Google Scholar 

  23. Lipchock, J.M. & Loria, J.P. Nanometer propagation of millisecond motions in V-type allostery. Structure 18, 1596–1607 (2010).

    Article  CAS  Google Scholar 

  24. Neudecker, P. et al. Structure of an intermediate state in protein folding and aggregation. Science 336, 362–366 (2012).

    Article  CAS  Google Scholar 

  25. Vendruscolo, M. Excited-state control of protein activity. J. Mol. Biol. 412, 153–154 (2011).

    Article  CAS  Google Scholar 

  26. Boehr, D.D., Nussinov, R. & Wright, P.E. The role of dynamic conformational ensembles in biomolecular recognition. Nat. Chem. Biol. 5, 789–796 (2009).

    Article  CAS  Google Scholar 

  27. Chen, L. et al. Structural instability tuning as a regulatory mechanism in protein-protein interactions. Mol. Cell 44, 734–744 (2011).

    Article  CAS  Google Scholar 

  28. Sprangers, R. & Kay, L.E. Quantitative dynamics and binding studies of the 20S proteasome by NMR. Nature 445, 618–622 (2007).

    Article  CAS  Google Scholar 

  29. Gelis, I. et al. Structural basis for signal-sequence recognition by the translocase motor SecA as determined by NMR. Cell 131, 756–769 (2007).

    Article  CAS  Google Scholar 

  30. Takeuchi, K., Ng, E., Malia, T.J. & Wagner, G. 1-13C amino acid selective labeling in a 2H15N background for NMR studies of large proteins. J. Biomol. NMR 38, 89–98 (2007).

    Article  CAS  Google Scholar 

  31. Evenäs, J. et al. Ligand-induced structural changes to maltodextrin-binding protein as studied by solution NMR spectroscopy. J. Mol. Biol. 309, 961–974 (2001).

    Article  Google Scholar 

  32. Mandel, A.M., Akke, M. & Palmer, A. Backbone dynamics of Escherichia coli ribonuclease HI: correlations with structure and function in an active enzyme. J. Mol. Biol. 246, 144–163 (1995).

    Article  CAS  Google Scholar 

  33. Cole, R. & Loria, J. FAST-Modelfree: a program for rapid automated analysis of solution NMR spin-relaxation data. J. Biomol. NMR 26, 203–213 (2003).

    Article  CAS  Google Scholar 

  34. d'Auvergne, E.J. & Gooley, P. Optimisation of NMR dynamic models I. Minimisation algorithms and their performance within the model-free and Brownian rotational diffusion spaces. J. Biomol. NMR 40, 107–119 (2008).

    Article  CAS  Google Scholar 

  35. Lipari, G. & Szabo, A. Model-free approach to the interpretation of nuclear magnetic resonance relaxation in macromolecules. 1. Theory and range of validity. J. Am. Chem. Soc. 104, 4546–4559 (1982).

    Article  CAS  Google Scholar 

  36. Tjandra, N., Feller, S., Pastor, R. & Bax, A. Rotational diffusion anisotropy of human ubiquitin from N-15 NMR relaxation. J. Am. Chem. Soc. 117, 12562–12566 (1995).

    Article  CAS  Google Scholar 

  37. Hwang, P.M., Skrynnikov, N. & Kay, L. Domain orientation in beta-cyclodextrin-loaded maltose binding protein: diffusion anisotropy measurements confirm the results of a dipolar coupling study. J. Biomol. NMR 20, 83–88 (2001).

    Article  CAS  Google Scholar 

  38. Dosset, P., Hus, J., Blackledge, M. & Marion, D. Efficient analysis of macromolecular rotational diffusion from heteronuclear relaxation data. J. Biomol. NMR 16, 23–28 (2000).

    Article  CAS  Google Scholar 

  39. Mulder, F.A., Mittermaier, A., Hon, B., Dahlquist, F. & Kay, L. Studying excited states of proteins by NMR spectroscopy. Nat. Struct. Biol. 8, 932–935 (2001).

    Article  CAS  Google Scholar 

  40. Carver, J.P. & Richards, R.E. A general two-site solution for the chemical exchange produced dependence of T2 upon the Carr-Purcell pulse separation. J. Magn. Reson. 6, 89–105 (1972).

    CAS  Google Scholar 

  41. Watt, E.D., Shimada, H., Kovrigin, E. & Loria, J. The mechanism of rate-limiting motions in enzyme function. Proc. Natl. Acad. Sci. USA 104, 11981–11986 (2007).

    Article  CAS  Google Scholar 

  42. Henzler-Wildman, K.A. et al. Intrinsic motions along an enzymatic reaction trajectory. Nature 450, 838–844 (2007).

    Article  CAS  Google Scholar 

  43. Korzhnev, D.M. et al. Low-populated folding intermediates of Fyn SH3 characterized by relaxation dispersion NMR. Nature 430, 586–590 (2004).

    Article  CAS  Google Scholar 

  44. Millet, O., Loria, J., Kroenke, C., Pons, M. & Palmer, A. The static magnetic field dependence of chemical exchange linebroadening defines the NMR chemical shift time scale. J. Am. Chem. Soc. 122, 2867–2877 (2000).

    Article  CAS  Google Scholar 

  45. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the US National Science Foundation grant MCB1121896 to C.G.K.

Author information

Authors and Affiliations

Authors

Contributions

S.-R.T. and C.G.K. conceived the project. S.-R.T. and C.G.K. designed the experiments. S.-R.T. performed all of the experiments. S.-R.T. and C.G.K. analyzed and interpreted the data and wrote the manuscript.

Corresponding author

Correspondence to Charalampos G Kalodimos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Results (PDF 822 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tzeng, SR., Kalodimos, C. Allosteric inhibition through suppression of transient conformational states. Nat Chem Biol 9, 462–465 (2013). https://doi.org/10.1038/nchembio.1250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nchembio.1250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing